
Defect Tolerance in Homogeneous Manycore Processors Using Core-Level
Redundancy with Unified Topology

Lei Zhang†, Yinhe Han†, Qiang Xu‡, and Xiaowei Li†∗

†Key Laboratory of Computer System and Architecture
Institute of Computing Technology, Chinese Academy of Sciences

{zlei, yinhes, lxw}@ict.ac.cn

‡Department of Computer Science & Engineering
The Chinese University of Hong Kong

qxu@cse.cuhk.edu.hk

Abstract
Homogeneous manycore processors are emerging for tera-

scale computation. Effective defect tolerance techniques are
essential to improve the yield of such complex integrated cir-
cuits. In this paper, we propose to achieve fault tolerance
by employing redundancy at the core-level instead of at the
microarchitecture-level. When faulty cores existing on-chip in
this architecture, how to reconfigure the processor with the most
effective topology is a relevant research problem. We present
novel solutions for this problem, which not only maximize the
performance of the manycore processor, but also provide a uni-
fied topology to operating system and application software run-
ning on the processor. Experimental results show the effective-
ness of the proposed techniques.

1. Introduction
As technology advances, industry has started to employ mul-

tiple cores on a single silicon die. Significant research has been
undertaken on tera-scale computing that is able to integrate tens
to hundreds of homogeneous processor cores on a single chip to
process massive amounts of information in parallel [1, 2, 3]. For
example, an 80-core teraflop processor prototype was demon-
strated at Intel Developer Forum 2006. Such processors con-
taining a large number of cores are called manycore processors
(note the difference from multicore processor that contains a
small number of cores). In terms of communication infrastruc-
ture, Network-on-Chip (NoC) is generally regarded as the most
promising interconnect solution for such giga-scale ICs [4], in
which the topology determines the ideal performance of the on-
chip network whereas the routing algorithm and the flow control
mechanism determine how much of this potential is realized.

There are many challenges for the architecture design of
manycore processors, in which manufacturing yield is one of
the most serious concerns because an IC’s profitability depends
heavily on it [6]. With the ever-increasing circuit density, ob-
taining high fabrication yield solely through improving the man-
ufacturing process is increasingly difficult and will become un-
affordable in the near future. A more practical solution is to
provide defect tolerance capabilities on-chip by incorporating

∗To whom correspondence should be addressed.
The work of L. Zhang, Y. Han and X. Li was supported in part by Na-

tional Natural Science Foundation of China (NSFC) under grant No.(60633060,
60606008, 60576031), in part by National Basic Research Program of China
(973) under grant No. 2005CB321604, and in part by Hi-Tech Research and
Development Program of China under grant No.2007AA01Z109. The work of
Y. Han was also supported by the fund of Chinese Academy of Sciences (No.
20074010) due to the President Scholarship. The work of Q. Xu was supported
in part by the Hong Kong SAR RGC Earmarked Research Grants 2150503 and
2150558.

redundant circuits. For example, memory Built-In-Self-Repair
(MBISR) techniques have been widely utilized in the indus-
try and prove to be very effective to keep the high fabrication
yield of memory circuits. Such techniques should be extended
to other types of VLSI circuits as well [5].

However, tolerating defects in processors is quite different
from memory circuits because its internal structure is not as
regular as memory cells. Previous attempts in this domain
mainly focused on introducing microarchitecture-level redun-
dancy (e.g., [7, 8]). This is appropriate for multicore proces-
sors (e.g., a quad-core processor) in order to keep the hard-
ware overhead small. When the number of on-chip cores in-
creases to a point that single core becomes inexpensive when
compared to the entire manycore processor (e.g., a 64-core pro-
cessor), however, it is not necessary to tolerate defective cores
at the microarchitecture-level. Instead, it is more appropriate to
employ core-level redundancy in such cases to reduce the com-
plexity associated with microarchitecture-level redundancy.

With core-level redundancy, faulty cores are replaced by
spare ones placed on-chip. Therefore, it is possible that the
topology of the target design is modified and different fabri-
cated chips may have different underlying topologies. This is a
big burden for programmers because an optimized program for
one topology may not work well for a different one and the pro-
grammers are facing various topologies when optimizing their
parallel programs.

To address the above problem, the concept of logical topol-
ogy is introduced in this paper. A logical topology is isomor-
phic with the topology of the target design but is a degraded
version. From the viewpoint of the operating system (OS) and
the programmers, they always see a unified logical topology
regardless of the various underlying physical topologies. This
eases the dispatching and scheduling tasks for OS and facil-
itates the optimization of parallel programs. To compare the
performance of different logical topologies, we introduce two
evaluation metrics, namely distance factor (DF) and congestion
factor (CF). Effective topology reconfiguration techniques are
then presented to find the best logical topology in terms of the
two evaluation metrics. Experimental results on a hypothetical
64-core manycore processor show the effectiveness of the pro-
posed techniques.

The rest of this paper is organized as follows. Section 2
presents the motivation of this work. In Section 3, we formulate
the topology reconfiguration problem investigated in this paper.
The proposed algorithm is then described in detail in Section 4.
Next, Section 5 presents experimental results. Finally, we con-
clude this paper in Section 6.

2. Motivation
2.1. Core-level redundancy

Researchers evaluate the effectiveness of various redundancy
mechanisms using yield-adjusted throughput (YAT), which
shows the average chip throughput when a large number of
chips are fabricated [7, 8]. As can be observed from Fig
1(a), there is a crossover point, from which core-level redun-
dancy will bring better YAT than microarchitecture-level re-
dundancy. Similarly, in Fig 1(b), we can observe, as technol-
ogy advances, YAT becomes increasingly lower without redun-
dancy. At the same time, microarchitecture-level redundancy
(grey part) brings YAT improvement, but at a smaller scale when
compared to core-level redundancy (white part) in newer tech-
nology generation.

crossover
point

Y
A

T

Tech
/nm

#cores

2
5

0

1
8

0

1
3
0

1
0
0

7
0

5
0

(1) (2) (4) (6) (12) (24)

Microarch.-level redundancy

Core-level redundancy

(a) redrawn from [7].

abcd

90 65 32 18

Y
A

T

Tech
/nm

Microarch.-level redundancy

Core-level redundancy

No redundancy

(b) redrawn from [8].

Figure 1. YAT comparison between micro-
architecture-level and core-level redundancy.
From the above, we can conclude that, for homogeneous

manycore processors that contain a large number of on-chip
cores and are fabricated in latest technology, providing spare
cores on-chip is more beneficial when compared to providing
microarchitecture-level redundancy.

There are two schemes to design homogeneous multicore
processors or manycore processors with core-level redundancy,
namely As Many As Available (AMAA) and As Many As De-
mand (AMAD). The AMAA scheme, adopted in Sun’s Ultra-
SPARC T1 processors [9], degrades a chip by disabling faulty
cores only. For example, a fabricated quad-core processor can
be a full version with 4 operational cores; or it can be degraded
to a tri-core, dual-core or single-core processor depending on
the number of cores that are faulty. In AMAD scheme, also de-
noted as “N+M” mechanism in this paper, an N-core processor
is provided with M redundant cores and we always provide cus-
tomers with N operational cores. That is, it is possible that there
are fault-free cores left unused in AMAD scheme.

It is preferred to employ the AMAA scheme in multicore pro-
cessors to keep the overhead small. However, as the number of
on-chip cores increases, the overhead of leaving a few redun-
dant cores on-chip unused is acceptable because a single core is
inexpensive compared to the entire chip. In addition, with many
cores implemented on-chip, we may get various types of de-
graded chips (with different number of faulty cores) after fabri-
cation and the yield of the demanded N-core processor cannot be
promised in AMAA scheme. Finally, from a commercial point

of view, as there are many different degraded versions, it may
cause some confusion in marketing. Therefore, for manycore
processors, AMAD scheme is preferred and we mainly focus on
this scheme in this paper.

2.2. Physical topology and logical topology
In homogeneous manycore processors, the performance of

the on-chip communication infrastructure significantly affects
the efficiency of parallel applications. In order to minimize the
communication overhead among threads or tasks, today’s OS
relies on explicit knowledge of the underlying topology [13].
For example, in Microsoft Windows Server 2003, a so-called
advanced configuration and power interface (ACPI) hardware is
used to pass a description of the physical topology of the system
to the OS [11]. The topology information is used by Windows
when dispatching and scheduling tasks. Topology information
is also provided to programmers through API functions to opti-
mize application software [11].

(a) What we expect. (b) What we implement.

faulty corefault-free core on-chip router

(c) What we get.

Figure 2. Faulty cores change the topology of tar-
get design.
In AMAD scheme, as the cores that are fabricated to be de-

fective are not known a priori, when they are replaced by spare
cores, the topology of the target design can be different. For ex-
ample, suppose we want to provide 9-core processors with 3×3
2-D mesh topology to customers, as shown in Fig 2(a). Also,
suppose 3 redundant cores (1 column) are provided to improve
the yield of these chips as shown in Fig 2(b). If some cores
(no more than 3) are defective, we could still get 9-core proces-
sors. However, as shown in Fig 2(c), if faulty cores are replaced
by spare cores, not only the topologies that we get are different
from what we expect, but also the topologies of different chips
are distinct. It would be rather cumbersome for OS and pro-
grammers to face many different topologies and optimize them
differently.

To address the above problem, we propose the concept of
logical topology and we try to provide a unified topology re-
gardless of the underlying one. Before introducing the details,
we first define Reference Topology as the topology of the target
design that we expect. For example, the 3×3 2-D mesh topology
in Fig 2(a) is the expected reference topology.

For the “9+3” manycore processor shown in Fig 2(b), sup-

pose the 7th, 10th and 11th cores are defective after fabrication
as shown in Fig 3(a), these cores are considered to be removed
out of the chip. The remaining fault-free cores and their inter-
connections construct a Physical Topology as shown in Fig 3(b).
It should be emphasized that once a manycore processor is taped
out, its physical topology is determined and cannot be changed
during its lifetime. This is fundamentally different from board-
level multiprocessor systems, which are much easier to be re-
paired since the target topology can be maintained by simply
replacing the faulty processor with a good one.

Based on AMAD scheme, a 9-core processor can still be pro-
vided but with different topology when compared to the refer-
ence topology. That is, we can construct a Logical Topology of
the chip based on the given physical topology, which is isomor-
phic with the reference topology. An example is shown in Fig
3(c), in which we construct a logical 3×3 2-D mesh topology.

(b) the physical topology.

(c) a logical topology.

1 2 3 4

5 6 8

9 12

7

1

9

5 6 8

2 3 4

1210 11
9 6 12

5 2 8

1 3 4

(a) a chip with faulty

cores.

faulty core

fault-free core

on-chip router

Figure 3. Physical topology and logical topology.
By introducing the concept of logical topology, OS and pro-

grammers always see a unified topology that is isomorphic with
the reference topology, no matter how the underlying cores are
connected physically. This greatly simplifies task dispatching
and scheduling duties for OS and also facilitates the optimiza-
tion of parallel programs. In addition, a unified topology that
isolates various physical topologies for different chips also eases
manycore processors’ marketing process.

We are able to construct many logical topologies for a ho-
mogeneous manycore processor with a specific physical topol-
ogy since any two fault-free cores can be logical neighbors to
each other. A relevant research problem is then how to select
the best one and provide it to the customers. This topology re-
configuration problem is quite different from MBISR, although
both use redundant components to achieve yield improvement.
In MBISR, the physical structures have to be maintained the
same before and after reconfiguration, determined by the usage
of memory chips [10]. However, in manycore processors, ev-
ery core is an autonomous system and is able to communicate
with other cores through on-chip interconnection network. The
physical topology is therefore not necessary to be kept the same
after reconfiguration. Only a unified logical topology needs to
be maintained as described before.

It should be also noted that, there are many ways to imple-
ment the mapping from various physical topologies to their cor-
responding logical topologies for manycore processors. For ex-
ample, one possible solution is to assign every core with a con-
figurable index and fix it after fabrication to construct the ex-
pected logical topology.

3. Topology reconfiguration problem
A logical topology is typically a degraded version of the ref-

erence topology with faulty-cores on-chip. Since there can be
many logical topologies for a particular physical topology, we
should choose the one that has the best performance. In order
to do so, two evaluation metrics are introduced in this section to
model the performance degradation of different logical topolo-
gies when compared to the reference topology, namely distance
factor (DF) and congestion factor (CF). It is important to note
that the communication infrastructure is assumed to be fault-free
in this research work.

Distance Factor: Distance factor is used to evaluate the com-
munication delay between cores. The distance factor between
two logical nodes n and n′ (DFnn′) is defined as the physical
hops between them (DFnn′ = Hopsnn′). The distance factor of
node n (DFn) is defined as the average distance factor between
node n and all its logical neighbors:

DFn =
1

k

k∑
n′=1

DFnn′ ; (1)

(Node n has k logical neighbors)
The distance factor of a logical topology (DF) is defined as

the average DFn of all nodes:

DF =
1

N

N∑
n=1

DFn; (2)

(There are in total N nodes in the logical topology)
The reference topology has the minimum DF as all logical

neighbors are usually located next to each other physically. For
example, DF is 1 in mesh and torus topologies, which means
that each pair of logical neighbors is exactly one hop away from
each other. Larger value of DF means longer communication
delay among logical neighbors.

Congestion Factor: A logical topology not only changes the
average distance among cores but also affects the distribution of
traffic flows. Traffic may become uneven among different links.
We define the congestion factor of a physical link l, denoted
as CFl as follows: for any nodes n and n′, if they are logical
neighbors, and l is on one of the routing paths between them
according to the NoC’s routing mechanism (e.g., XY-routing),
we add CFl by 1. For the reference topology, all links have the
same congestion factors. However, for a degraded logical topol-
ogy, some physical links may become congested with greater
CFl while the others with smaller CFl.

Based on the above, we define the congestion factor of a log-
ical topology (CF) as the standard deviation of CFl of all links.

CF =

√√√√√
L∑

l=1

(CFl − CFl)2

L− 1
; (3)

(There are totally L links in the physical topology)
CF of the reference topology is 0, which means that traffic

can be evenly distributed across the network. Greater CF means
less even flow distribution. Please note that even though ad-
vanced routing algorithms can be introduced to balance flow dis-
tribution, CF is able to evaluate the raw flow distribution which
reflects the quality of a logical topology.

9 6 12

5 2 8

1 3 4

9 3 12

5 6 8

1 2 4

DF=1.565; CF=1.348 DF=1.685; CF=1.057

...

There are many

logical topologies

for a given

physical topology

Topology

Reconfiguration

Algorithm selects

the best one

OS & Programmers

...

1 2 3 4

5 6 8

9 12

A unified topology

with least

performance

degradation

Figure 4. Topology reconfiguration.
With the above two metrics, the quality of different logical

topologies can be evaluated and compared. DF and CF might be
conflicted with each other during optimization, hence we unify
them together. The Unified Metric (UM) is defined as

UM = wDF ×DF + wCF × CF, (4)

in which wDF and wCF are the optimization weights designated
by users (wDF + wCF = 1).

Suppose the reference topology is mesh or torus, the topol-
ogy reconfiguration problem investigated in this paper can be
formulated as follows:
[Topology Reconfiguration Problem (TRP)] For a N = R×C
homogeneous manycore processor with M redundant cores, sup-
pose D cores (D ≤ M) are faulty, construct R× C coordinates
as follows:




(R− 1, 0) (R− 1, 1) · · · (R− 1, C − 1)
. .
(1, 0) (1, 1) · · · (1, C − 1)
(0, 0) (0, 1) · · · (0, C − 1)




Distribute these coordinates to (N + M − D) fault-free cores
to construct a logical topology Tlogical, in which nodes with co-
ordinates (i+1, j), (i-1, j), (i, j+1) and (i, j-1) are four logical
neighbors of node (i, j), and nodes without being assigned coor-
dinates are left unused, satisfying:

UM of Tlogical is minimized.

Two example logical topologies for a given physical topol-
ogy are shown in Fig 4. The values of DF and CF for these
two logical topologies are also shown in the figure. Clearly,
new topology reconfiguration algorithm needs to be developed
to select the best candidate topology.

4. Proposed topology reconfiguration algorithm
As any two fault-free cores can be logical neighbors to each

other, the solution space of TRP is huge. Therefore, efficient and
effective heuristics should be introduced to solve this problem.
In this paper, we mainly focus on the reconfiguration problems
for mesh and torus topologies, which are the most widely used
ones for homogeneous manycore processors. Other topologies
(e.g., butterfly topology or fat tree topology) may require differ-
ent optimization algorithms.

1 3 4 5

6 2 9 10

11 7 14 15

16 12 8 20

(a) Only Row Rippling is used. (b) Both Row Rippling and

Column Stealing are used.

1 2 3 4

7 8 9 10

11 12 14 15

16 18 19 20

1 2 3 4

7 8 9 10

11 12 14 15

16 18 19 20

1 2 3 4

7 8 9 10

11 12 14 15

16 20

5

6

Figure 5. Examples of RRCS procedure.

Simulated Annealing (SA) is a widely-used technique for
combinatorial optimization problems and it is utilized to solve
TRP in this work. To apply SA to our TRP problem, we first
present an efficient and effective heuristic, namely Row Rip-
pling Column Stealing (RRCS) algorithm, to generate a good
initial solution, and then apply SA on top of it to further refine
the solution. We call this strategy RRCS-guided simulated An-
nealing (RRCS-gSA) technique, detailed in the following.

4.1. Row rippling column stealing
It can be easily observed that the performance degradation

of a logical topology is mainly caused by the physical irregular-
ity of the logical topology compared to the reference topology.
Based on this observation, the proposed RRCS algorithm tries to
maintain the physical regularity of the logical topologies in row
and in column unit.

Suppose in mesh or torus topology, there are one column of
spare cores. If a row contains only one faulty core, Row Rip-
pling is employed to reconfigure the row, in which a faulty core
is replaced with its neighbor and the logical position of the core
used to replace the faulty one is transferred to the next neigh-
boring core. This process continues until the spare one is used
to replace the last element in the row. An example of using row
rippling in a “16+4” processor with 4×4 mesh reference topol-
ogy and one column redundancy is depicted in Fig 5(a). The
achieved logical topology is shown above the physical topology.

When a row contains more than one faulty cores, the right-
most faulty core is replaced using rippling. The other faulty el-
ements within the row, however, are replaced with the elements
immediately beneath them. In other words, we “steal” a fault-
free core from another row within the same column. This stolen
core should be considered faulty when the row containing it is
reconfigured. As another example shown in Fig 5(b), to config-
ure the uppermost row, which contains 3 faulty cores, we steal
the 12th and the 8th fault-free cores for the left two fault cores;
while the rightmost one is rippling to the 20th core, as shown in
the logical topology above.

In the above discussion, we provide a column of redundant
cores as an example. In practice, the number of redundant cores,
i.e., M, for an N-core processor should be carefully decided by
the designers in advance, and may be different from the column
size. This however does not affect the working mechanism of
the proposed RRCS algorithm as it only needs to compare the
number of faulty cores Nf and spare cores on each row. We
are able to generate an effective logical topology as long as the
number of faulty cores is less than M .

4.2. RRCS-guided simulated annealing algo-
rithm

RRCS is very efficient to generate an effective initial solu-
tion, but it does not directly consider DF or CF metrics during
the optimization process. We apply SA technique on top of its
result to further refine the solution. During the SA optimization
process, we use the UM defined in Eq. 4 as the minimization
objective. The procedure of RRCS-gSA algorithm is described
as below.

Procedure for RRCS-guided Simulated Annealing

STEP1: Use RRCS to generate an initial solution ltcurrent;
T ← TMAX; iter ← 0;

STEP2: Select a ltnext from the neighbor-set of ltcurrent;
IF UM(ltnext) < UM(ltcurrent);
THEN ltcurrent ← ltnext;
ELSE ltcurrent ← ltnext with probability e

−∆UM
T ;

REPEAT STEP2 kT times
STEP3: T ← r × T

IF T ≥ TMIN THEN iter++; return to STEP2;
ELSE exit.

In RRCS-gSA, for a solution point, its neighborhood solution
is generated by exchanging the coordinates of each fault-free
node-pair. For example, if the current solution is

[
(1, 0) Faulty Unused
(0, 0) (0, 1) (1, 1)

]
,

one of its neighbors by exchanging (1,1) and ‘unused’ is
[

(1, 0) Faulty (1, 1)
(0, 0) (0, 1) Unused

]
.

As can be observed from the algorithm, we evaluate kT

neighbor solutions of ltcurrent at each temperature T . There
are some other important parameters that determine the perfor-
mance of RRCS-gSA algorithm, in which r, TMAX and TMIN
are the cooling rate, the initial temperature and the solidifica-
tion temperature, respectively. We can trade-off the quality of
the obtained solution with computational time in the RRCS-gSA
algorithm using the above parameters.

5. Experimental results
5.1. Experimental setup

In our simulation experiments, a synthetic traffic model
is adopted, which is represented as an array of com-
munication distribution probability [12]. For example,
[P1hop, P2hop, P3hop, P>3hop] = [40, 20, 20, 20] means that the
probability for 1-hop communication is 40%, and is 20% for 2-
hop communication, etc. We can get various traffic patterns by
adjusting the probability distribution. It is important to point out
that the traffic patterns are applied to logical topologies, not to
physical topologies. A NoC simulation engine is implemented
to incorporate the above traffic model. We obtain statistics of
End-To-End delay (ETE delay), link occupation and through-
put, and use them to compare the performance of different logi-
cal topologies.

Finally, we introduce a Random algorithm as the baseline so-
lution to compare with our proposed algorithm. For a given

physical topology, this Random algorithm generates 2000 dif-
ferent logical topologies randomly and provides the best one as
its output.

5.2. Experiment I
The objective of this experiment is to not only show the ef-

fectiveness of the proposed RRCS-gSA algorithm, but also show
the effectiveness of the two evaluation metrics used in our algo-
rithms, i.e., DF and CF.

The experimental manycore processor has a 8×8 mesh ref-
erence topology with one column spare cores and 8 randomly
distributed faulty cores. We construct various physical topolo-
gies and import the logical topologies generated from Random
and RRCS-gSA algorithms into the simulation environment. The
obtained DF and CF values are averaged and shown in Fig 6.

First of all, it is clear that RRCS-gSA algorithm achieves great
improvement over Random algorithm in terms of both DF and
CF, which proves the effectiveness of the proposed algorithm.

0

1

2

3

4

5

D
F

Random

RRCS-gSA

Ref

(a) DF comparison.

-1

0

1

2

3

4

C
F

Random

RRCS-gSA

Ref

(b) CF comparison.

Figure 6. DF and CF comparison between Ran-
dom, RRCS-gSA (wDF =wCF =0.5) and Ref
Next, we show how these two proposed evaluation metrics,

i.e., DF and CF, reflect the real performance of different logical
topologies. Two traffic patterns are applied: One with one-hop
communication only ([100, 0, 0, 0]) while the other one with a
more uniform pattern ([40, 20, 20, 20]).

ETE delay is defined as the average latency for a packet
traveling from its source to its destination under certain traffic
pattern. Generally speaking, shorter average distance between
nodes results in lower ETE delay under the same traffic pattern.
The ETE delay results are depicted in Fig 7. Ref represents the
ETE delay of the reference topology. We can observe that log-
ical topologies achieved by RRCS-gSA (wDF =0.9) have much
lower ETE delays than the ones obtained using Random algo-
rithm, and they are also quite close to the ETE delay in Ref un-
der both traffic patterns.

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 1000 2000 3000 4000

E
T

E
 d

el
ay

Time

0.25

Random

RRCS-gSA
Ref

(a) traffic pattern [40, 20, 20, 20].

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 1000 2000 3000 4000

E
T

E
 d

el
ay

Time

0.25

(b) traffic pattern [100, 0, 0, 0].

Figure 7. ETE delay comparison between Random,
RRCS-gSA (wDF =0.9, wCF =0.1) and Ref.

O
cc

u
p
at

io
n

[40,20,20,20]

Ref

Random
RRCS-gSA

Links

80%

60%

40%

20%

0

(a) traffic pattern [40, 20, 20, 20].
O

cc
u

p
at

io
n

[100, 0, 0, 0]

Ref

Random
RRCS-gSA

Links

80%

60%

40%

20%

0

(b) traffic pattern [100, 0, 0, 0].

Figure 8. Flow distribution comparison between
Random, RRCS-gSA (wDF =0.1, wCF =0.9) and Ref.

Packet Interarrival Time

1

2

3

4

5

6

0.5 0.4 0.3 0.2 0.1 0.09 0.08

T
h
ro

u
g
h

p
u
t

(×
1

0
5
 b

it
s/

s) Random

RRCS-gSA
Ref

(a) traffic pattern [40, 20, 20, 20].

Packet Interarrival Time

1

2

3

4

5

6

0.5 0.4 0.3 0.2 0.1 0.09 0.08

T
h

ro
u

g
h

p
u

t
(×

1
0

5
 b

it
s/

s)

(b) trafficpattern [100, 0, 0, 0].

Figure 9. Throughput comparison between Ran-
dom, RRCS-gSA (wDF =wCF =0.5) and Ref.

Link occupation is defined as the percentage that the link
bandwidth is occupied. Higher occupation value means more
traffic traveling through the link, or in other words, this link
is more congested. The average occupations of all links under
different traffic patterns are depicted in Fig 8. Again, Ref repre-
sents the value of the reference topology.

For Random algorithm, the link occupation distribution is
rather uneven. Some links are quite congested while the others
are barely used as shown in Fig 8. Traffic distribution of RRCS-
gSA (wCF =0.9) is close to the reference topology under traffic
pattern [40, 20, 20, 20] as shown in Fig 8(a), while they are
more uneven when compared to the reference value under pat-
tern [100, 0, 0, 0] as shown in Fig 8(b). It can be concluded that
the performance degradation of logical topologies has greater
impact on more localized traffic pattern.

Finally, we compare the throughputs of various logical
topologies achieved by Random and RRCS-gSA algorithms un-
der different traffic patterns. The average results are shown in
Fig 9. As the packet inter-arrival time decreases, the NoC links
tend to be saturated and we can obtain the throughput of the
logical topology. From these figures, we can observe that the
throughput for the logical topology obtained with Random al-
gorithm is quite small. For RRCS-gSA (wDF =wCF =0.5), the
obtained throughput is slightly smaller than the one in Ref un-
der traffic pattern [40, 20, 20, 20], while they are almost the
same as the reference value under traffic pattern [100, 0, 0, 0].

5.3. Experiment II
In this experiment, we evaluate the impact of the number of

spare cores on topology reconfiguration. A 8×8 2-D mesh refer-
ence topology with 2 randomly distributed faulty cores is used.

We vary the number of spare cores from 2 to 8 (i.e., S2, S4, S6
and S8 in Fig 10).

For a fixed number of faulty cores, more spare cores result
in more unused cores and links according to AMAD scheme.
The average distance among logical nodes and the flow distri-
bution becomes much worse when using Random algorithm as
can be seen in Fig 10. However, RRCS-gSA algorithm is very
effective to avoid this situation. As can be seen in Fig 10, for
RRCS-gSA, DF is slightly improved while CF remains nearly
unchanged. Therefore, we can conclude employing more-than-
necessary number of spare cores does not facilitate to boost the
manycore processors’ performance much after reconfiguration.

C
F

S2 S4 S6 S8
-0.5

0.5

1.5

2.5

3.5

D
F

S2 S4 S6 S8
0.5

1.5

2.5

3.5

4.5

5.5

6.5

Random RRCS-gSA (wDF=wCF=0.5) Ref

Figure 10. The impact of different number of
spare cores.

6. Conclusion
In this paper, we propose to employ core-level redundancy

with AMAD scheme for defect tolerance in homogeneous
manycore processors. As defective cores change the physical
topology of the target design, the concept of logical topology
is introduced to provide a unified topology to the OS and pro-
grammers to ease their optimization. We also present an ef-
fective and efficient heuristic, namely RRCS-gSA algorithm, to
solve the topology reconfiguration problem. Experimental re-
sults show that the proposed technique is able to dramatically
boost the performance of the manycore processor when com-
pared to a random baseline solution.

References

[1] S. Borkar. Thousand core chips - a technology perspective. Proc. DAC, pp. 746–
749, 2007.

[2] A. Agarwal, M. Levy. The kill rule for multicore. Proc. DAC, pp. 750–753, 2007.
[3] Intel White Paper “From a few cores to many: a tera-scale computing research

overview.” http://www.intel.com/research/platform/terascale/.
[4] W. J. Dally, B. Towles. Route packets, not wires: on-chip interconnection networks.

Proc. DAC, pp. 18–22, 2001.
[5] I. Koren, D. K. Pradhan. Yield and performance enhancement through redundancy

in VLSI and WSI multiprocessor systems. Proceedings of the IEEE, 74(5):699–711,
May 1986.

[6] I. Koren, Z. Koren. Defect tolerance in VLSI circuits: techniques and yield analysis.
Proceedings of the IEEE, 86(9):1819-1838, Sep.1998.

[7] S. Premkishore, S. W. Keckler, C. R. Moore, D. Burger. Exploiting microarchitec-
tural redundancy for defect tolerance. Proc. ICCD, pp. 481–488, 2003.

[8] E. Schuchman, T. N. Vijaykumar. Rescue: a microarchitecture for testability and
defect tolerance. Proc. ISCA, pp. 160–171, 2005.

[9] P. J. Tan, et al. Testing of UltraSPARCT M microprocessor and its challengess.
Proc. ITC, pp. 1–10, 2006.

[10] M. Fukushi, Y. Fukushima, S. Horiguchi. A genetic approach for the reconfigura-
tion of degradable processor arrays. Proc. DFT, pp. 63–71, 2005.

[11] Application software considerations for numa-based systems.
http://www.microsoft.com/whdc/system/platform/server/datacenter/numa isv.mspx.

[12] Z. H. Lu, A. Jantsch. Traffic configuration for evaluating networks on chips.
Proc. IEEE Int. Workshop System-on-Chip for Real-Time Applications, pp. 535–
540, 2005.

[13] W. Stallings. Operating systems: internals and design principles. Prentice Hall,
2000.

