
HHC: Hierarchical Hardware Checkpointing to
Accelerate Fault Recovery for SRAM-based FPGAs

Enshan Yang1,2, Keheng Huang1,2, Yu Hu1, Xiaowei Li1
1.State Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences

{yangenshan, huangkeheng, huyu, lxw}@ict.ac.cn

Jian Gong3,4, Hongjin Liu3,4, Bo Liu3,4
3.Beijing Institute of Control Engineering,

4.Science and Technology on Space Intelligent

Control Laboratory

{gjxjtu1997, lhjbuaa}@hotmail.com, liub@bice.org.cn

Abstract—As the feature size shrinks to the nanometer scale,
SRAM-based FPGAs are increasingly vulnerable to soft errors.
Checkpointing is an effective fault recovery technique that can
restore the faulty system to its previous fault free state. Since the
function of the system needs to be suspended during checkpoint
saving and checkpoint restoring, so the Mean Time to Repair
(MTTR) of the system is critical to the system performance.
In this work, we propose a hierarchical hardware checkpointing
(HHC) technique that contains a high-speed on-chip checkpoint
and a low-speed off-chip checkpoint to accelerate fault recovery
for SRAM-based FPGAs. Most of single event effect (SEE) faults
can be recovered by the high-speed on-chip checkpoint, which
significantly reduces the MTTR of the system. The memory
resource occupation of the on-chip checkpoint is low because HHC
only stores the logic states of user bits and check information for
configuration bits. Experimental results show that, compared with
traditional off-chip checkpoint strategies, the proposed technique
can reduce the MTTR of the system by 94.30%. In addition, the
memory resource occupation is 11.11% of FPGAs, a little high
but can be further optimized.

Index Terms—SRAM-based FPGAs, fault recovery, hardware
checkpoint, hierarchical, MTTR, ECC.

I. INTRODUCTION

Field programmable gate arrays (FPGAs) provide an attrac-
tive design platform due to their short design cycle and low
development cost. With exponential growth in performance
and capacity, SRAM-based FPGAs are widely used in many
application domains. In recent years, SRAM-based FPGAs
are further applied in aerospace system [1] [2] and high
performance supercomputers [3]–[5].

Although SRAM-based FPGAs have many advantages, they
are more vulnerable to soft errors induced by high-energy
particles than application-specific integrated circuits (ASICs)
[6] [7], which limits their widespread usage in mission-critical
applications. The function of SRAM-based FPGAs is deter-
mined by the bitstream stored in SRAM cells. When high-
energy particles hit sensitive sections of the FPGA silicon, they
may cause SRAM cells to flip its state, called single event
effect (SEE) faults, which may affect the normal function of
the system.

To mitigate soft errors in SRAM-based FPGA, there are a
lot of error mitigation techniques, such as the work during
logic synthesis [9], placement and routing [10]. However, these
techniques can only mitigate the effect of soft errors, while

cannot make SRAM-based FPGAs immune from soft errors.
Consequently, fault recovery techniques are indispensable.

Checkpoint is an effective way to recover the faulty system.
The procedure of checkpointing can be mainly divided into two
steps. First, if the system is fault free, the running application is
periodically suspended, then save the logic state of system as a
checkpoint. Afterwards, if fault occurs, restore the checkpoint,
so the system can resume from the fault free state. Since
the checkpoint saving and restoring may affect the normal
function of system, the MTTR of the system is critical to the
performance. On the other hand, the controller and the storage
of checkpointing strategies need additional hardware resources,
so the area overhead is another concern.

Checkpoint can be established in either software or hard-
ware. Traditional checkpoint techniques are mainly software
checkpoint that are implemented with dedicated commands
issued by the operating system [11]–[13]. In contrast, hardware
checkpoint is introduced in recent years which utilizes hardware
features to save and restore the system state [14]–[20]. Accord-
ing to the implementation methods, hardware checkpoint can
be further divided into two categories.

The first category of hardware checkpointing is design mod-
ification. For a design, the work proposed in [14]–[17] adds
specific data path to read and write state elements. In function
mode, the state elements can be read and written by original
functional circuit, while in checkpoint saving mode, the state
elements can be accessed by the specific data path. There are
several ways to implement the data path, such as establishing
a scan chain for all state elements [14]–[16] or allocating an
addressable RAM structure [17]. The main advantages of this
category are the high data efficiency and chip independence.
Taking the scan chain based data path as an example. The
scanned out data exactly corresponds to the state of the system,
thus its data efficiency is very high. In addition, as the scan
chain is constructed at the RTL level, there is no need to know
the detailed architecture of the bitstream. However, the biggest
disadvantage is the high area overhead. To establish the data
path, an additional hardware structure is essential for each state
element, which may significantly increase the area occupation
of the design. Additionally, the added data path may increase
the delay of the original design, which leads to unexpected
performance degradation.

The second category of hardware checkpointing is bitstream

193978-1-4799-0664-2/13/$31.00 c©2013 IEEE

�����
��	
��
��
����

�������

�����
�����
����
���

������
�
�������
�

���

���

 �! "�	!
	��

� ��
� ��� ��
�

�����

�����
�����
����
���

�� ����

#���� �������
�

���

$�� �������

����� %������
�
&��� ���'

�	
 ��� ����� ��� () ���*��

��� +() ���*��

��� 	����� ������	������ ��������� ��� �
	�	��� ��� ���������

 �! "�	!
	��

,
��
��	!
	��

�����* *��
�
����
� �������
�

Fig. 1. Framework of the off-chip checkpointing technique and the proposed HHC technique.

readback [18]–[20], which utilizes the readback feature provid-
ed by FPGA vendors, such as Xilinx and Altera. By capturing
the system state into bitstream first, and then read the bitstream
back to retrieve the checkpoint at a given time. Compared to the
design modification method, the main advantage of bitstream
readback is no modification of the original design. Bitstream
readback methods use the inherent state access structure and
configuration port to readback bitstream. On the other hand,
these works need to filter the state information from the
bitstream, which indicates the data efficiency is relatively low.
Meanwhile, the detailed knowledge of the bitstream is essential.

In mission-critical system, the saved checkpoint is generally
taken as a golden image of the system, so the checkpoint should
be stored in a radiation-immune storage. Since FPGAs are
vulnerable to radiation-induced soft errors, existing checkpoint-
based fault recovery methods store the checkpoint in off-chip
storage [18]–[22], called off-chip checkpointing, as Fig. 1(a)
shows. For all kinds of faults, the checkpoint needs to be trans-
mitted to FPGAs from the off-chip storage, then restored into
the system. Note that, due to the low transmission bandwidth
between FPGAs and the off-chip storage, the data transmission
becomes the time bottleneck of checkpointing, which severely
affects the MTTR of the system. Analytical result shows
that, for off-chip storage, the typical bandwidth of checkpoint
transmission is 33Mbps [26]. In contrast, the bandwidth of
checkpoint storing inside the FPGAs can achieve as high as
3.2Gbps [23]. There is a nearly 100 times gap between check-
point transmission and checkpoint storage, which motivates us
to increase the bandwidth of checkpoint transmission to reduce
MTTR.

In this work, we focus on the readback configuration based
hardware checkpointing technique, and propose a hierarchi-
cal checkpointing technique to accelerate fault recovery for
SRAM-based FPGAs, as Fig. 1(b) shows. Compared to tra-
ditional SEE mitigation solutions [28], [29], Not only can the
HHC technique restore the circuit function and the circuit’s
state based on hardware implementation, but also it achieves
acceleration of system recovery by introducing on-chip check-
point. The proposed HHC technique can reduce the MTTR of
the system, while has low area overhead in FPGAs. The main
contributions of this paper are:

1) The proposed HHC technique consists of high-speed

on-chip checkpoint and low-speed off-chip checkpoint.
Most faults can be recovered by the on-chip checkpoint,
which significantly reduces the MTTR and increases the
availability of system.

2) As the configuration bits (CBs) protected by error cor-
rection codes (ECC) online, the on-chip checkpoint only
stores the logic state of user bits (UBs) and check infor-
mation for CBs, which significantly reduces the memory
resource occupation in FPGAs. On the other hand, the
HHC technique stores both CBs and UBs in the off-chip
checkpoint in case of multi-bit fault in CBs.

3) Some suggestions are given to Xilinx to modify the
design of FrameECC. FrameECC is a hard IP core
inside Xilinx FPGAs, which provides dedicated, built-
in ECC for the configuration memory of FPGAs. The
modified FrameECC is compatible with the proposed
HHC technique, while has no adverse effect on other
application of the core.

The following discussions are based on Xilinx FPGAs.
But the HHC technique are widely portable as long as the
FPGAs are in support of configuration readback. The rest of
this paper is organized as follows. Section 2 introduces the
background and motivation. Section 3 describes the proposed
HHC technique. Section 4 gives the experimental results. The
conclusion and future work are given in Section 5.

II. BACKGROUND AND MOTIVATION

A. Architecture of SRAM-based FPGAs

The architecture of SRAM-based FPGAs can be clearly
described from two levels. From logic level, SRAM-based
FPGAs have fixed number of configurable logic blocks (CLBs),
switch boxes and wire segments. The CLB is a multi-input,
multi-output digital circuits, the switch box and wire segments
are used to implement connections among CLBs. In addition,
there are some hard IP cores, such as Block RAM (BRAM) and
Internal Configuration Access Port (ICAP), as Fig. 2 shows.
From configuration level, the function of SRAM-based FPGAs
is determined by the bitstream stored in SRAM cells. The
bitstream is composed of two parts, the CBs that determine
the functionality of the design, and the UBs that determine the
state of the running system. In Xilinx FPGAs, the bitstream
is organized as a network of frames [23]. The Xilinx FPGA

194 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

�	����
���	� �����

��� ���

�	��� �����

���	"���

-�
��"���

��
�

��
��
�
�
 �
���
��
��
��

����
��������
�
�������
�

�����

���

���

���

���

���

� !"

#�!�

$%����
�	&

$%����
�	&

$%����
�	&

$%����
�	&

'�
�
���(����

�
�
�

�
�
�

$�� "
��

�
������

�
������

#���� �.�����
��
#���� ��������
�

Fig. 2. Architecture of SRAM-based FPGAs.

provides such hardware feature that can be used to perform
actions on configuration bitstream. The capture feature can
generate a snapshot of current system state, then writes it
from logic level to configuration level, which changes UBs
only. This procedure takes few clock cycles. The readback
feature helps getting back configuration frame, so analysis of
the frame can be made thereafter. The writeback feature helps
us write specific data into configuration level of FPGAs. The
restore feature achieves implementation of writing data from
configuration level to logic level, so the system can resume
working from a given state, which is reverse process of capture.
In each frame, apart from CBs and UBs, there are also ECC
bits that can correct single-bit and detect double-bit fault in the
frame, as Fig. 2 shows. The Primary ECC bits are calculated
based on UBs and CBs. The ECC bits become invalid once
UBs changed [23]. Analytical result shows that, CBs take up
more than 98% of SRAM cells, while both UBs and ECC bits
take up less than 2%. According to [8], more than 96% of the
faults are single-bit fault, then the single-bit fault in CBs takes
up nearly 98%*96%=95% of the faults in FPGAs, which is a
big concern for reliability.

B. System availability and MTTR

Availability represents the percentage of time that the system
is ready to serve end users, which is an important issue
for mission-critical system. Availability can be calculated as
follows:

Availability =
MTBF

(MTBF +MTTR)
(1)

where MTBF represents the Mean Time Between Failures. To
improve the availability of the system, a methodology can either
increase MTBF or reduce MTTR of the system. As SRAM-
based FPGAs are vulnerable to effects of Single Event Upset,
the system breaks down inevitably. it’s hard to improve MTBF.
So in this paper, we set the goal to reduce MTTR.

Based on the Fail-Stop fault model [24] [25], there is a
system failure after the fault occurs immediately. During the
normal operation of the system, checkpoint is saved for a
specified period. For readback configuration based hardware
checkpoint technique, the procedure of checkpoint saving will
not affect the normal function of system. Then, if a fault occurs,
checkpoint restoring is performed to resume the system, as Fig.
3 shows. The MTTR is composed of two parts, which can be
computed as

������	��� ������ ���� 	���

����

)�
���(��)
���(�
��(�

"))

��(�

")�� "))

$������

��� 	����� ������	��� ���������

��� ��� �
	�	��� ��� ���������

������	���
���	
���

")��

)�
���(��

)
���(�

Fig. 3. Time information of checkpointing techniques.

MTTR = Ttransmit + Tresume (2)

where Ttransmit represents the time that transmits the check-
point from the storage to FPGAs. Tresume represents the time
that restores checkpoint to system. For all faults, traditional off-
chip checkpointing techniques need to call the low-speed off-
chip checkpoint to recover the system. The low transmission
bandwidth between FPGAs and the off-chip storage becomes
the bottleneck of fault recovery, as Fig. 3(a) shows. In contrast,
the proposed HHC can recover 95% of the faults by calling
the high-speed on-chip checkpoint, which can significantly
accelerate system recovery, as Fig. 3(b) shows.

III. HIERARCHICAL HARDWARE CHECKPOINTING

TECHNIQUE

In this work, we propose a hierarchical hardware check-
pointing technique. Besides the checkpoint stored in the off-
chip storage, we establish an additional on-chip checkpoint
in FPGAs. By using ECC to on-the-fly protect CBs, the on-
chip checkpoint only contains the state of UBs (called state
checkpoint) and check information for CBs, which results in
low memory resource occupation in FPGAs. Fig. 1(b) shows
the overview of the proposed HHC technique. Note here state
checkpoint is reliable by ECC protection.

A. Operation of the proposed HHC technique

The operation flow of the proposed HHC technique is shown
in Fig. 4. When the system is power on, FPGAs is configured
by the bitstream. Meanwhile, the ECC check bits of each
configuration frame are computed and stored in FPGAs. Here
only the check bits for CBs are computed, while the logic state
of UBs are ignored.

During normal operation, we take a snapshot of state for
running system into configuration bitstream. Then every used
configuration frame is sequentially readback. In this phase, the
ECC checker is used to examine if there are faults in CBs,
and other fault detection schemes, like DMR or TMR, are
used to check whether faults occur in UBs. If there is no fault
for all used frames, the UBs are filtered out as both the on-
chip checkpoint and the off-chip checkpoint, as procedure 1©
in Fig. 4 shows. On the other hand, if there is a fault detected,
depending on the type of the fault, the following checkpoint
recovery scenarios are possible:

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 195

���� �������	�
�*�� ������
+," +)" �

�(�
�������

	������
������	���

��	��
-

	������ ������	���
���������(���

���� �� .��

�	 ����

	����� ������	���
���������(���

	�����
������	���

��	��
-

$-���(���(�

/�&� ������	���

�	

������� �- *��
������
0

����� �� ���

/	
1��

	������
������	���

��	��
-

$���� �����
�
�������	��

Fig. 4. Operation of the hierarchical checkpointing technique.

a) Scenario 1: fault recovery by on-chip checkpoint. If
there is a single-bit fault in CBs, the faulty site is reported
by the ECC checker. To recover the system, the faulty frame
is corrected by the ECC checker first. Then, the on-chip
checkpoint can be directly used to restore the correct system
state, as procedure 2© in Fig. 4 shows. In this case, due to
the high bandwidth of data transmission in FPGAs, the time
overhead of fault recovery is quite low. If there is a fault
in UBs, additional fault detection algorithms, such as DMR
or TMR, are needed to pound the alarm, then use the on-
chip checkpoint to restore the system, as procedure 3© in Fig.
4 shows. Note the accuracy of state checkpoint is the basic
premise every time we invoke on-chip checkpoint recovery
procedure. But once the state checkpoint becomes unreliable
due to rigorous environment, off-chip checkpoint is necessary
to recover the system.

b) Scenario 2: fault recovery by off-chip checkpoint. If
there is a multi-bit fault in CBs of the frame, it’s beyond the
error correcting capability of the ECC mechanism. During fault
recovery, since the on-chip checkpoint that stores only UBs is
insufficient to correct the fault, the off-chip checkpoint is used
to recover the system, which is the same as traditional off-chip
checkpointing strategies, as procedure 4© in Fig. 4 shows.

After fault recovery, system resumes working normally.

B. Implementation of the proposed checkpointing technique

Compared to the off-chip checkpointing techniques shown in
Fig. 1(a), the proposed HHC technique additionally adds four
parts, state checkpoint for UBs, ECC checker for CBs, DMR
for UBs and control logic, as Fig. 1(b) shows. Here DMR is
incorporated into user design, which is not shown.

Firstly, extracts the system state, then stores it in the BRAM
of FPGAs and Flash. Here BRAM is protected by ECC. If
a fault occurs, the system state can be recovered by direct-
ly calling the on-chip checkpoint, rather than the off-chip
checkpoint as existing work does. Additionally, ECC checker
is introduced as a substitution of Xilinx FrameECC. That’s

������� ������	���

�	��
	� �	���

,�������
����
��� 	
�����
������
�

$����
������	���
�� !"�

#�!�
,�����

������
$����

"������

$����
*&�
����	�+#������	�

�����

*��
������

.��

���

," +)"

Fig. 5. Architecture of on-chip checkpoint.

because the frameECC coding algorithm generates the check
bits for constant CBs and UBs [23], while UBs are volatile in
the proposed HHC technique. When system state is captured
into configuration level, UBs are altered, then frameECC is
not applicable. To make the Xilinx ECC coding algorithm
compatible, the proposed HHC filters the UBs out, and then
generates check bits only for CBs. Under the circumstances,
the state variation of UBs will not affect the ECC checking
for CBs. The control logic manages the execution of fault
detection and fault recovery. The detailed architecture of the
on-chip checkpoint is shown in Fig. 5.

In this work, the on-chip checkpoint is established by bit-
stream readback. The hard IP core ICAP is used to access
the bitstream of FPGAs. The database stores the address of
state registers. The ECC checker generates the ECC bits for
each configuration frame when system is configured for the
first time, and detects the faults in CBs when the configuration
frames are readback. The BRAM stores the UBs that repre-
sent the system state as the on-chip checkpoint. Also check
information is stored in BRAM. The control logic manages the
read/write sequence of the ICAP device. In addition, the control
logic filters out UBs from the configuration frame during
checkpoint saving, and composes UBs in the state checkpoint
and the readbacked CBs to recover the system state during
checkpoint restoring.

C. Comparison of MTTR

The main steps of checkpointing are checkpoint saving and
checkpoint restoring. During checkpoint saving, the bitstream
readback will not affect the normal function of the system,
so there is no time overhead in this phase. During checkpoint
restoring, if there is a single-bit fault in CBs or UBs, the
proposed HHC technique first corrects the fault by ECC checker
for CBs. Then the proposed HHC technique reads remaining
CBs by ICAP device, and composes CBs with UBs in the on-
chip state checkpoint to recover the system, which can avoid
the bottleneck of data transmission between FPGAs and the
off-chip storage. In this case, the time of checkpoint restoring
Ton−chip can be computed as follows

Ton−chip = Ttransmit + Tresume =
SCBs + SUBs

BWon−chip
+ Tresume

(3)

where SCBs represents the size of CBs, SUBs represents the
size of UBs stored in the on-chip checkpoint, and BWon−chip

represents the transmission bandwidth of BRAM in FPGAs.
Here Ttransmit corresponds to the execution time of procedure

196 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

�������	�
�������������������� �������
����	�����������������

�����	

(a) Scenario 1: a single-bit fault in CBs or fault in UBs

�������
���	����������������������	�

������	

(b) Scenario 2: a multi-bit fault in CBs

Fig. 6. Fault recovery scenarios of the proposed HHC technique.

capture and readback, while Tresume corresponds to the execu-
tion time of procedure writeback and restore in Fig.2. On the
other hand, if there is a multi-bit fault in CBs, the proposed
HHC calls the off-chip checkpoint to recover the system. In
these cases, the time of checkpoint restoring Toff−chip can be
computed as follows

Toff−chip = Ttransmit+Tresume =
SCBs + SUBs

BWoff−chip
+Tresume

(4)

where BWoff−chip represents the transmission bandwidth be-
tween FPGAs and the off-chip storage. Here Ttransmit corre-
sponds to the exection time of transmitting data from off-chip
storage to FPGAs, while Tresume corresponds to the execution
time of procedure writeback and restore in 2. Since BWon−chip

is much larger than BWoff−chip (BWon−chip=3.2Gbps for
Xilinx XC7K325T FPGAs [23], and BWoff−chip=33Mbps for
XCF32P storage device [26]), so Ton−chip is much shorter than
Toff−chip.

In terms of MTTR, traditional off-chip checkpointing tech-
nique needs to call the off-chip checkpoint no matter what kind
of fault occurs. So the MTTR of off-chip checkpoint technology
can be computed as

MTTRoff−chip = Toff−chip =
SCBs + SUBs

BWoff−chip
+ Tresume

(5)

In contrast, the proposed HHC separates the fault recovery
mechanism in different fault cases. Assuming the occurrence
probability of a single-bit fault in CBs or a fault in UBs is
Pon−chip, and the occurrence probability of a multi-bit fault in
CBs is Poff−chip. The MTTR of the proposed HHC technique
can be computed as

MTTRHHC = Pon−chip ∗ Ton−chip + Poff−chip ∗ Toff−chip

= Pon−chip ∗ (SCBs + SUBs

BWon−chip
+ Treume)

+ Poff−chip ∗ (SCBs + SUBs

BWoff−chip
+ Tresume) (6)

In SRAM-based FPGAs, the single-bit fault in CBs takes
up about 95% of the faults (Pon−chip = 95%), which indicates
that the proposed HHC can recovery about 95% of the faults by
directly calling the on-chip checkpoint, successfully avoiding
the bottleneck of data transmission between FPGAs and the
off-chip storage. As a result, the MTTR of the system is
significantly reduced.

IV. EXPERIMENTAL RESULTS

In order to validate the effectiveness of the proposed HHC
technique, we implement it in Xilinx Kintex XC7K325T FP-
GAs. The off-chip storage is an XCF32P flash with the capacity
of 32Mbit. The user design is a LEON3 SPARC processor [27].
In our experiments, all the algorithms are described in Verilog
HDL language.

To establish the database shown in Fig. 5, at the stage of
bitstream generation, −l option is used to generate the logic
location file (.ll file), which identifies the FFs of the design
and their positions in the bitstream. In our experiments, we
store it in the BRAM of FPGAs.

Assuming the simplest case that only a configuration frame
needs to be restored. We use ChipScope to conduct analysis of
the fault-recovery time in both on-chip and off-chip checkpoint
cases. According to the number of clock cycles monitored by
Chipscope, we can get following information(clock frequency
at 5Mhz):

the time of data transmission is Ttransmit = 4.61μs,
and the time to resume the checkpoint into the system is
Tresume = 2.94μs. So the time of fault recovery by the on-
chip checkpoint in Equation (3) is Ton−chip = 7.55μs, as Fig.
6(a) shows. In scenario 2, the off-chip checkpoint is used to
recover the system. In this case, the time of data transmission
from the off-chip storage is Ttransmit = 1026μs, and the time
to store the checkpoint into the system is Tresume = 2.94μs.
So the time of fault recovery by the off-chip checkpoint in
Equation (4) is Toff−chip = 1028.94μs, as Fig. 6(b) shows. As
mentioned before, the single-bit fault takes up 95% of faults in
FPGAs, the MTTR of the proposed HHC technique in Equation

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 197

TABLE I
AREA OCCUPATION OF THE PROPOSED HHC TECHNIQUE

Module (Used / Total) Ratio
State checkpoint 16.4 Kbits / 16020 Kbits 0.10%
ECC check bit 842.4 Kbits / 16020 Kbits 5.26%
Frame address 921.1 Kbits / 16020 Kbits 5.75%
Control logic+ECC checker 3743 LUTs / 343680 LUTs 1.09%
Total LUTs 3743 LUTs / 343680 LUTs 1.09%
Total BRAMs 1779.9 Kbits / 16020 Kbits 11.11%

(6) is MTTRHHC = 58.62μs. In contrast, the off-chip
checkpointing technique always uses the off-chip checkpoint to
recovery the system. The MTTR of the off-chip checkpointing
technique in Equation (5) is MTTRoff−chip = 1028.94μs. So
the proposed HHC can reduce the MTTR by 94.30%.

In terms of area overhead, Table I shows the area occupation
of the proposed HHC technique. As we can see, the proposed
HHC takes up 1.09% of the LUTs and less than 12% of the
BRAMs in FPGAs. Furthermore, the BRAM usage and the
LUTs usage can be further decreased. As described in Section
II, there are ECC bits in a configuration frame, which can
be used to store the ECC check bits. In addition, FrameECC
also can be modified to check ECC bits [23]. Traditional
FrameECC checks ECC bits for both CBs and initial UBs.
But ECC bits can be invalid as we capture system state into
configuration frame, which changes UBs. This way frameECC
results in false error detection. So we suggest Xilinx to modify
the FrameECC that only check ECC bits for CBs to make
FrameECC compatible with checkpointing based fault recovery
scheme. Note that, the modification has no adverse effect on
other application of the FrameECC core.

V. CONCLUSION AND FUTURE WORK

In this work, we observe the bottleneck of the traditional
off-chip checkpointing techniques, and proposed a hierarchical
hardware checkpointing technique for fault recovery of SRAM-
based FPGAs. The proposed HHC technique contains a high-
speed on-chip checkpoint and a low-speed off-chip checkpoint,
which can reduce the MTTR of the system by 94.30%. Fur-
thermore, the on-chip checkpoint only stores the UBs check
information for CBs, so the memory resource occupation is
about 11% in FPGAs. Moreover, we can pipleline procedure
of transmission and resumption of checkpoint to accelerate
system recovery. In the future, we will extend the proposed
HHC technique to other mission-critical applications.

REFERENCES

[1] Kenneth A. Label, Rich Katz, “NASA FPGA Needs and Activities,” in
Proc. of Military Aerospace Applications of Programmable Logic Devices
(MAPLD), 2004.

[2] David Merodio Codinachs, “Overview of FPGA activities in ESA,”
MAFA2007, European Space Agency, 2007.

[3] M. Awad, “FPGA SUPERCOMPUTING PLATFORMS: A SURVEY,” in
Proc. of IEEE Field Programmable Logic and Applications (FPL), 2009,
pp.564-568.

[4] K. Compton, S. Hauck, “Reconfigurable computing: a survey of systems
and software,” ACM Computing Surveys(CSUR), vol. 34, no. 2, 2002,
pp.171-210.

[5] T. El-Ghazawi, E. El-Araby, M. Huang, and et al, “The Promise of High-
Performance Reconfigurable Computing,” IEEE Computing & Processing
(Hardware/Software), 2009, pp.69-76.

[6] C. Carmichael, E.Fuller, J. Fabula and et al, “Proton Testing of SEU
Mitigation Methods for the Virtex FPGA,” in Proc. of Military and
Aerospace Applications of Programmable Logic Devices(MAPLD), 1999.
pp. 23-25.

[7] E. Normand, “Single Event Upset at Ground Level,” IEEE Transactions
on Nuclear Science, vol. 43, no. 6, 1996, pp. 2742-2750.

[8] H. Quinn, P. Graham, J. Krone, and et al, “Radiation-induced Multi-Bit
Upsets in SRAM-based FPGAs,” IEEE Transactions on Nuclear Science,
vol. 52, no. 6, 2005, pp. 2455-2461.

[9] Y. Hu, Z. Feng, L. He, and R. Majumdar, “Robust FPGA resynthesis
based on fault-tolerant Boolean matching,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, Nov. 2008, pp. 706-713.

[10] K. Huang, Y. Hu, and X. Li, “Cross-layer optimized placement and
routing for FPGA soft error mitigation,” in Proc. IEEE/ACM Design,
Automation and Test in Europe(DATE), Mar. 2011, pp. 58-63.

[11] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and et al, “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,” ACM Com-
puting Surveys(CSUR), vol.34, no. 3, 2002, pp. 375-408.

[12] R. Gioiosa, J. Sancho, and et al, “Transparent, Incremental Checkpointing
at Kernel Level: a Foundation for Fault Tolerance for Parallel Computers,”
in Proc. IEEE/ACM Super Computing Conf. (SC), 2005, pp. 1-9.

[13] N. Elmootazbellah, S. James, “Checkpointing for Peta-Scale Systems: A
Look into the Future of Practical Rollback-Recovery,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 2, 2004, pp. 97-108.

[14] D. Koch, C. Haubelt and J. Teich, “Efficient Hardware Checkpointing-
Concepts, Overhead Analysis, and Implementation,” in Proc. of
ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays(FPGA),
2007, pp.188-196.

[15] A. Tiwari and K. A. Tomko, “Scan-chain based watch-points for efficient
run-time debugging and verification of FPGA designs,” in Proc. of Asia
and South Pacific Design Automation Conf.(ASP-DAC), 2003, pp. 705-
711.

[16] T. Wheeler, P. Graham, B. Nelson, and et al, “Using Design-Level Scan
to Improve FPGA Design Observability and Controllability for Functional
Verification,” in Proc. of Field-Programmable Logic and Application-
s(FPL), 2001, pp. 483-492.

[17] J.-Y. Mignolet, V. Nollet, P. Coene, and et al, “Infrastructure for Design
and Management of Relocatable Tasks in a Heterogeneous Reconfigurable
System-on-Chip,” In Proc. of IEEE/ACM Design, Automation and Test in
Europe(DATE), 2003, pp.986-991.

[18] H. Kalte, M. Porrmann, “Context Saving and Restoring for Multitasking
in Reconfigurable Systems,” in Proc. of IEEE/ACM Field Programmable
Logic and Applications(FPL), 2005, pp. 223-228.

[19] H. Simmler, L. Levinson, and R. Manner, “Multitasking on FPGA
Coprocessors,” in Proc. of IEEE/ACM Field Programmable Logic and
Applications(FPL), 2000, pp. 121-130.

[20] M.A. Khan, R.N. Pittman, and A. Forin, “gNOSIS: A Board-Level
Debugging and Verification Tool,” in Proc. of IEEE Int. Conf. on Re-
configurable Computing and FPGAs(ReConFig), 2010, pp. 43-48.

[21] C. Carmichael, M. Caffrey, A. Salazar, “Correcting Single-Event Upsets
Through Virtex Partial Configuration,” Xilinx Application Notes 216, 2000.

[22] W. J. Huang, E. J. McCluskey, “A memory coherence technique for online
transient error recovery of FPGA configurations,” in Proc. of ACM/SIGDA
Int. Symp. on Field-Programmable Gate Arrays(FPGA), 2001, pp. 183-
192.

[23] Xilinx, “7 Series FPGAs Configuration User Guide,” Xilinx User Guide
(UG470), 2013.

[24] R. D. Schlichting and F. B. Schneider, “Fail-Stop processors: An approach
to designing fault-tolerant computing systems,” ACM Transactions on
Computer Systems, 1, 3, 1983.

[25] M. Hiller, A. Jhumka, N. Suri, “EPIC: Profiling the propagation and
effect of data errors in software,” IEEE Transactions on Computers, 2004,
53(5):512-530

[26] Xilinx, “Platform Flash In-System Programmable Configuration PROM-
S,” Xilinx Datasheet (DS123), 2006.

[27] Aeroflex Gaisler, “GRLIB IP Library User’s Manual,” www.gaisler.com.
[28] F. Abate, L. Sterpone, and M. Violante, ”A new mitigation approach for

soft errors in embedded processors,” IEEE Trans. Nucl. Sci., vol. 55, no.
4, Pt. 1, pp. 2063-2069, Aug. 2008.

[29] M. Sonza Reorda, M. Violante, C. Meinhardt, and R. Reis, ”A low-
cost SEE mitigation solution for soft-processors embedded in Systems on
Programmable Chips,” in Proc. IEEE DATE, 2009, pp. 352-357.

198 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

