
An Evaluation of Misaligned Data Access Handling Mechanisms in Dynamic Binary
Translation Systems

Jianjun Li, Chenggang Wu
Key Laboratory of Computer System and Architecture

Institute of Computing Technology, Chinese Academy of Sciences
Beijing, China

{lijianjun, wucg}@ict.ac.cn

Wei-Chung Hsu
Department of Computer Science

University of Minnesota
Minnesota, USA
hsu@cs.umn.edu

Abstract—Binary translation (BT) has been an important
approach to migrate application software across instruction
set architectures (ISAs). Some architectures, such as X86,
allow misaligned data accesses (MDAs), while most modern
architectures have the alignment restriction that requires data
to be aligned in memory on natural boundaries. In a binary
translation system, where the source ISA allows MDA and
the target ISA does not, memory operations must be carefully
translated to satisfy the alignment restriction. Naive translation
will cause frequent misaligned data access traps to occur at
runtime on the target machine, and severely slow down the
migrated application.

This paper evaluates different approaches in handling MDA
in binary translation systems. It also proposes a new mech-
anism to deal with MDAs. Measurements based on SPEC
CPU2000 and CPU2006 benchmark show that the proposed
approach can significantly outperform existing methods.

Keywords-optimization; misaligned memory access; binary
translation

I. INTRODUCTION

Binary Translation (BT) [1] is a technique used to migrate
application binaries from one ISA to another [2] [3] [4].
When the target ISA is the same as the source ISA, BT
can have multiple interesting applications such as dynamic
optimization [5] [6], dynamic speculation and paralleliza-
tion [7], dynamic instrumentation [8] [9], and dynamic
software security enforcement [10]. When the target ISA
is different from the source ISA, dynamic BT is the key
technology for implementing process virtual machines [11].

Some architectures do not have alignment restrictions [12]
where data operands must start at addresses that are mul-
tiples of the data’s natural size. For example, X86 allows
Misaligned Data Accesses (MDA). The implementation of
such architectures may provide hardware support to gen-
erate multiple memory operations in completing the mis-
aligned memory access. Alternatively, the implementation
may choose to generate a misaligned access trap, and
let software to handle the required memory accesses. For
architectures that disallow MDA, such as MIPS, ALPHA,
IA-64, and most modern RISCs, misaligned data accesses
will always generate misaligned access traps. Since the

cost of handling a misalignment exception is very high,
frequent MDAs will severely slow down the execution of
the application. This is usually not a problem because
the compilers for modern RISCs ensure data are properly
allocated to satisfy the alignment restriction. The compiler
managed data allocation would preclude MDA from hap-
pening at runtime. However, in binary translation systems,
if the source architecture allows MDA so that the data in
the original binary were not properly aligned, the execution
of the translated memory operations is likely to generate
MDA. Therefore, in a binary translation system, when the
source architecture allows MDA, memory operations must
be translated carefully to minimize the performance impact
from MDA.

Different mechanisms to deal with MDA have been im-
plemented in existing binary translation systems, such as
Code Morphing Software [13], QEMU [4], FX!32 [2] and
IA-32 EL [3]. Code Morphing Software handles MDA with
the assistance of dedicated hardware. QEMU translates any
possible MDA operation into a sequence of byte operations
to avoid MDA, but this approach incurs significant instruc-
tion overhead. FX!32 and IA-32 EL can selectively translate
problematic MDA memory operations into byte operations
or some special code sequences to minimize overhead, but
their approaches are not adaptive to behavior changes in
programs. For programs exhibit different MDA behavior
under different input data sets or as part of phase changes,
frequent MDA traps can still occur in FX!32 and IA-32 EL.

This paper evaluates different methods for MDA handling
in existing binary translation systems and proposes a new
mechanism to more effectively translate memory operations.
It makes the following contributions:

• A comprehensive study of MDA handling mechanisms
in BT systems for the X86 architecture, including a
direct method, a static profiling method and a dynamic
profiling method.

• A new mechanism, which can adaptively handle MDA
according to behavior changes of the program, is pro-
posed. For some applications, the performance gain
can be more than 10% when compared with existing

2009 International Symposium on Code Generation and Optimization

978-0-7695-3576-0/09 $25.00 © 2009 IEEE

DOI 10.1109/CGO.2009.22

180

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

Table I: MDAs in SPEC CPU2000 and CPU2006
Benchmarks NMI Number of MDAs Ratio Benchmarks NMI Number of MDAs Ratio
164.gzip 80 406,431,686 0.52% 400.perlbench 77 1,469,188,415 0.26%
175.vpr 134 2,762,730 0.01% 401.bzip2 45 82,641,256 0.01%
176.gcc 154 37,894,632 0.06% 403.gcc 53 32,624 0.00%
181.mcf 16 1,649,912 0.02% 429.mcf 10 883,518 0.00%
186.crafty 20 4,950 0.00% 445.gobmk 76 1,741,956 0.00%
197.parser 16 291,054 0.00% 456.hmmer 127 13,757,509 0.00%
252.eon 3096 8,523,707,162 9.63% 458.sjeng 9 1,303 0.00%
253.perlbmk 270 148,689,820 0.23% 462.libquantum 9 435 0.00%
254.gap 14 1,128,048 0.00% 464.h264ref 96 138,883,221 0.01%
255.vortex 90 12,361,950 0.03% 471.omnetpp 394 6,303,605,195 3.37%
256.bzip2 44 25,233,188 0.04% 473.astar 32 758 0.00%
300.twolf 98 441,176,894 0.92% 483.xalancbmk 53 5,749,815,279 1.60%
168.wupwise 132 9,682 0.00% 410.bwaves 602 99,916,961,773 12.67%
171.swim 284 49,605,944 0.03% 416.gamess 424 13,073,700 0.00%
172.mgrid 78 1,772,430 0.00% 433.milc 3,825 67,272,361,837 12.09%
173.applu 306 2,243,041,896 1.60% 434.zeusmp 3,484 87,873,451,026 4.14%
177.mesa 54 9,370 0.00% 435.gromacs 197 123,577,765 0.01%
178.galgel 5282 492,949,052 0.27% 436.cactusADM 48 1,745,161 0.00%
179.art 1024 21,244,446,764 38.33% 437.leslie3d 205 23,645,192,624 2.54%
183.equake 30 524 0.00% 444.namd 103 10,516,106 0.00%
187.facerec 112 6,240,872 0.01% 450.soplex 538 13,446,836,143 5.71%
188.ammp 1134 73,194,953,020 43.12% 453.povray 918 36,294,822,277 8.30%
189.lucas 64 17,383,280 0.02% 454.calculix 139 478,592,675 0.02%
191.fma3d 398 5,383,029,436 3.36% 459.GemsFDTD 3,304 31,740,862 0.00%
200.sixtrack 1324 8,673,947,498 4.21% 465.tonto 1,748 38,717,125,228 3.80%
301.apsi 356 1,568,299,486 0.86% 470.lbm 8 7,124,766,678 1.14%
481.wrf 92 49,694,156 0.00% 482.sphinx3 115 3,118,790,131 0.31%
Average 597 9,525,126,313 1.44%

mechanisms.

The rest of this paper is organized as follows. Section II
gives a brief overview of MDAs in BT system and Section
III describes basic MDA handling methods. Section IV ex-
tends basic MDA handling with the assistance of exception
handling to catch new MDAs on-the-fly. It also introduces a
more adaptive mechanism to handle MDA based on the use
of misalignment exception handler. Section V describes the
experimental framework in which the misalignment handling
mechanisms are evaluated and Section VI presents the
experimental results. Section VII summarizes and concludes
this work.

II. MDAS IN BT SYSTEMS

How often would MDA occur in a BT system if the
source ISA has no alignment restrictions? Let us consider
a case where the source ISA is X86 and the target ISA is
Alpha. Table I lists the number of MDAs encountered for the
SPEC CPU2000 and SPEC CPU2006 benchmarks (with ref
input set) which are compiled for X86 by the pathscale2.4
compiler on an X86/Linux system. In the table, NMI stands
for the number of instructions that references misaligned
data, and Ratio is the number of MDAs divided by the
total number of memory accesses. Table I shows that some
programs have very frequent MDAs (e.g. 410.bwaves with
12.67% of all memory operations are MDAs, and 433.milc,
12.09%) and some programs have essentially no MDAs (e.g.
462.libquantum and 473.astar). On average, a program may

incur 9.5 billion MDAs. If each MDA is handled by the
misaligned access trap handler, which may cost nearly 1K
cycles [15] [16], then the average overhead could be as high
as 9.5K seconds on a 1GHz machine.

Conventional wisdom has it that even in computers
that allow misaligned data access, programs compiled with
aligned accesses would run faster [12]. Therefore, indepen-
dent software vendors (ISV) may prefer to release their
X86 binaries with compiler optimization to enforce aligned
memory accesses. It is true that many compilers for the
X86 architecture do support optimizations that enforce data
alignments, such as the icc, the pathscale, and the gcc com-
piler. Nevertheless, this optimization is not on by default.
In addition, such alignment optimizations were not used for
released SPEC benchmark numbers on the X86 architecture.
We have tested the performance impact of data alignment
on X86 machines using a set of SPEC benchmarks. Figure 1
shows the performance with alignment optimization (using
the pathscale and the icc compilers) on X86 machines.
There were no significant performance advantages with data
alignment (1% for pathscale and 1.8% for icc, on average).
The performance gains from aligned data accesses could be
outweighed by the increased data working set size. This may
explain why many released X86 binaries were not complied
with data aligned.

In addition, we have observed frequent MDAs in the
X86 shared libraries, such as libc.so.6, and libgfrotran.so.6.
We have noticed that more than 90% of MDAs occurred

181

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

5.0%
10.0%
15.0%
20.0%

du
p

10.0%
5.0%
0.0%
5

Sp
ee

d

pathscale

intel cc

Figure 1: Performance with alignment optimization flags for pathscale and
intel cc

in 164.gzip, 400.perlbench, and 483.xalancbmk are actually
come from shared libraries. Even if some ISVs release
their binaries with data alignment enforced, as long as the
application uses the shared libraries, frequent MDAs may
still occur at runtime. Therefore, it is critical that a BT
system handles MDA efficiently if the source ISA allows
misaligned data accesses.

III. DIRECT TRANSLATION AND PROFILING BASED

METHODS

Several different MDA handling mechanisms have been
implemented in existing binary translation systems. The
mechanisms can be classified into four categories: direct
method(Section III-A), static profiling based (Section III-
B), dynamic profiling based (Section III-C), and exception
handling based (Section IV).

In current binary translation systems, QEMU [4] use
direct method to handle MDAs, FX!32 [2] uses a method
similar to static profiling, and the dynamic profiling method
is introduced by IA-32 EL [3]. These are all pure software
techniques for handling MDA. Hardware technique is em-
ployed in Transmeta’s Code Morphing Software [13] [14],
and it is beyond the scope of this paper.

A. Direct Method

For any data access that is greater than a byte, a mis-
aligned data accesses could happen and would cause mis-
aligned access traps to be generated on machines with align-
ment requirements. Some architectures without hardware
support to MDAs usually provide a code sequence (we call
it MDA code sequence in this paper) to access misalign-
ment address without triggering misalignment exceptions. In
fact, the misalignment exception handler can use the same
MDA code sequence to handle the misaligned data access.
The direct method simply translates all memory access
instructions into the MDA code sequence [4]. On the Alpha
architecture, there are some special instructions to support
the handling of misaligned data accesses, such as the ldq u
(Load Quadword Unaligned), extll (Extract Longword Low),

mov 0x2(%ebx), %eax

ldq_u R1, 2(R2)
ldq_u R21, 5(R2)
lda R22, 2(R2)
extll R1, R22, R1
extlh R21, R22, R21
or R21, R1, R1
addl R31, R1, R1

translate

X86 Code Translated Code

Figure 2: MDA Handling with direct method on Alpha

and extlh (Extract Longword High) instructions1. Figure 2
illustrates the MDA code sequence on Alpha [20] [21]. In
this example, register %eax and %ebx in X86 are mapped
to register R1 and R2 in the Alpha binary respectively, and
register 21-30 of Alpha are used as temporal registers in
BT. The first two ldq u instructions are used to retrieve the
data into two temporal registers, then the designated data
are merged into the destination register, R1, and an addl
instruction is used to sign-extend the longword to quadword.
Note that in Alpha, R31 means value zero.

It is obvious that executing the MDA code sequence
would be much faster than going through an exception
handling. Hence, direct translation of memory operations to
MDA code sequence can be faster if the memory operation is
an MDA. However, the MDA code sequence is much slower,
if compared to a single memory operation. Therefore when
there are no misaligned data accesses, using the MDA code
sequence would incur significant overhead. As a result if
the memory operation is likely to be an MDA, it should be
translated into the MDA code sequence. If it is unlikely to
be an MDA, it should remain as a regular memory operation,
and leave the misaligned access (suppose to be rare) to
exception handling. This is the basic idea of MDA handler.
The challenging issues here are a) how to determine the
probability of the memory operation being an MDA, b) is
the behavior of the MDA operation stable, and c) if the
behavior tends to change, is it changing with a predictable
pattern.

B. Static Profiling Based Method

Some BT systems rely on static profiling to identify
memory operations that are likely to be MDA. A profiling
run with training input set collects information on MDA.
Guided by the profile, the binary translator generates the
MDA code sequence for the memory operation with high
MDA probability [2]. Figure 3 depicts the mechanism of
the static profiling based method.

1On MIPS and Itanium architectures, there are also several special
instructions to support MDAs, for example, ldl/ldr on MIPS and shrp on
Itanium. However, on some architectures, there are no special instructions
to support MDA, so that the misaligned data access has to be handled in
a sequence of byte or halfword memory operations.

182

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

X86 Image Interpreter Execution
Profile

Translator

Translated
Image

Excute

Pre execution

Figure 3: Static Profiling Mechanism

This mechanism is effective if the training input is rep-
resentative and can reflect the real execution behavior of
the program. However, this is not true in many cases.
Additionally, many programs allocate data dynamically. On
subsequent runs, a dynamically allocated data may or may
not be aligned. Therefore, with static profiling, MDAs may
still occur frequently. If the MDAs happen to be in a hot
loop, the performance penalty could be very high.

C. Dynamic Profiling Based Method

In order to overcome the limitation of static profiling,
many dynamic binary translation systems adopt a two-phase
translation approach. In the first phase, the binary is either
interpreted or directly translated without any optimization
and profiles are collected from execution; in the second
phase, hot regions identified from the first phase are retrans-
lated and further optimized.

The dynamic profiling method is based on the two-phase
binary translation approach. As depicted in the left hand
side of Figure 4, all memory reference instructions are
interpreted or translated with light instrumentation in the
first phase. When an MDA occurs at runtime, the detailed
misalignment information (the address of instruction which
have misaligned access and the type of misalignment) is
recorded. Then during the hot code translation phase (i.e.
the 2nd phase), the recorded information guides the code
selector to determine whether MDA code sequences should
be generated [3]. In the experiments which we show in
Section VI, we generate MDA code sequence for a memory
access instruction if the instruction has performed MDA
once during the profiling stage.

In contrast to static profiling, dynamic profiling is adaptive
to behavior changes with different inputs, and it does not
require a separate profiling process. However, if the behavior
change occurs after the code is generated, the performance
would suffer (either from MDA traps or from unnecessary
MDA code sequence). Our experiments show that increasing
the hot code threshold can effectively reduce the MDAs by
more accurately capture those MDA candidates. However,
to eliminate a majority of MDAs in some applications, the
threshold must be set so high that profiling overhead be-
comes excessive. For example, the threshold for 410.bwaves

Interpreter

X86 Image
Execution

Profile

Translator

Execute
Translated code

Translated Image

Intermediate
Representation

U
na

lig
ne

d
Tr

ap

OS

Unaligned
Exception
Handler

M
od

ify
 th

e
Tr

an
sl

at
ed

 c
od

e

Dynamic Profiling

Misalignment Exception Handler

Figure 4: Dynamic Profiling & Exception Handling Mechanisms in MDA
Handling

should be as high as 266K if we want to eliminate most
MDAs. We definitely need more effectively ways to capture
those MDA candidates.

IV. EXCEPTION HANDLING BASED METHOD

Section III deals with the basic MDA handling methods
used in existing BT systems. The basic handling methods at-
tempt to minimize misaligned traps at runtime by translating
memory operations into MDA code sequences. Execution
profiles are used to selectively translate only the memory
operations with high likelihood of MDA into the MDA code
sequence. In this section, we enhance basic MDA handling
with the help of exception handling information. A more
adaptive MDA handling mechanism is also proposed.

An exception handling based method is illustrated in the
right hand side of Figure 4. In the initial translation, we
assume all memory references are naturally aligned, and
translate them into normal memory instructions. Once a
misalignment exception is raised in the translated code, the
OS calls the misalignment exception handler registered by
the binary translation system. In the misalignment exception
handler, the following steps will be taken:

• Obtain and analyse the instruction that incurs misalign-
ment exception with the context information of the
exception point.

• Generate the MDA code sequence for that offending
memory instruction.

• Allocate memory (this memory is usually called code
cache by BT systems) to store the MDA code sequence.

• Patch the offending memory operation to a branch
instruction jumping to the MDA code sequence stored
in code cache, and insert a branch instruction back into
the block at the end of the MDA code sequence.

To minimize the performance impact of MDA, the instruc-
tion that incurs MDA was patched immediately as soon as
the first MDA exception is encountered during execution.

Figure 5 shows the translated native code on Alpha when a
4-byte load incurs misalignment exception at run-time [20].

183

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

Code fragment 1

pc1: ldl R1, 2(R2)

Code fragment 2

Code fragment 1

pc1: br pc2

Code fragment 2

pc2: ldq_u R1, 2(R2)
ldq_u R21, 5(R2)
lda R22, 2(R2)
extll R1, R22, R1
extlh R21, R22, R21
or R21, R1, R1
addl R31, R1, R1
br pc1+4

Exception
Handler

Translated Native Code on
ALPHA

Misalignment
Exception

Figure 5: Example of the Exception Handling Based Method

Code fragment 1

pc1: br pc2

Code fragment 2

pc2: ldq_u R1, 2(R2)
ldq_u R21, 5(R2)
lda R22, 2(R2)
extll R1, R22, R1
extlh R21, R22, R21
or R21, R1, R1
addl R31, R1, R1
br pc1+4

Code fragment 1

pc1: ldq_u R1, 2(R11)
ldq_u R2, 5(R11)
lda R3, 2(R11)
extll R1, R3, R1
extlh R2, R3, R2
or R2, R1, R1
addl R31, R1, R1

Code fragment 2

Relocate the target address of branch instruction

Code
rearrange

Figure 6: Example of Code Rearrangement Method

The code modified by the misalignment exception handler
is given in the right hand side of Figure 5. In the figure, pc1
represents the address of the offending memory operation,
and pc2 is the start address of the MDA code sequence.
After the exception handling, the original instruction in pc1
is replaced with a branch instruction which jumps to pc2, and
at the end of the MDA code sequence, a branch instruction
is inserted to direct the execution back to the next instruction
of pc1.

A. Code rearrangement

One drawback of the exception handling based method is
that the code locality is decreased after patching the memory
operation to a jump. This may lead to increased instruction
cache misses and result in significant performance loss. Code
rearrangement can be used to get back the desired spatial
locality. An example of code rearrangement (often called
code repositioning) that we adopted is illustrated in Figure
6.

B. Combining Dynamic Profiling with Exception Handling
(DPEH)

Although code rearrangement can avoid the loss of code
locality from Exception Handling based method, it requires
code relocation. If the number of memory operations incur-
ring MDA is large, the cost of performing relocation may be
excessive and unacceptable. One compromise is to combine
the advantages of dynamic profiling with exception handling

Executing the translated
native code

A misalignment
exception occurs

Misalignment Exception Handler
1.Handle the misalignment
2.Record the number of instructions which
incur misalignment data accesses in current
block (num_of_mialignment ++).

num_of_misalignment >= threshold

Invalidate the native code of
current block, and retranslate it.

Translated Image

Yes

No

Figure 7: Overview of the retranslation process

based method. Dynamic profiling is adopted to identify those
memory operations with frequent MDA initially. At this
stage, the dynamic profiling is operating with a relatively
low threshold to minimize profiling overhead. This phase can
identify many, if not most, memory operations with possible
MDA. The remaining memory operations with MDA will
be left for the exception handler to take care. In this way,
the impact of code locality will be minimized, the need for
code rearrangement with relocation is decreased, and we can
enjoy the benefit of dynamic profiling with a low threshold.
This new approach is actually the system illustrated in
Figure 4.

C. Retranslation

Dynamic profiling can identify many frequent MDA oper-
ations in a block so that they can be turned into MDA code
sequences at the first translation instead of being handled
one by one through the exception handler.

However, for programs that have frequent behavior
changes, the initial translation based on dynamic profiling
may likely be ineffective. When such cases are identified,
our BT system can simply invalidate the translated code
for a basic block, and re-start the dynamic profiling and
translation process for this block. The retranslation process is
illustrated by the flowchart in Figure 7. When the number of
MDA exceptions in a block reaches a threshold, the original
translated native code of the block is invalidated and the
process of retranslation is initiated. This is somewhat similar
to the code cache flush policy employed in Dynamo [5]
except that Dynamo flush the entire code cache while our
BT invalidates translated code at block granularity.

184

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

and Raddr, #3, Rtemp
bne Rtemp, L1

original memory
reference instruction

br L2
L1:

MDA sequence
L2:

Multi-version Code

and Raddr, #3, Rtemp1
bne Rtemp1, L2
ldah Rtemp1, Ad
lda Rtemp1, Ad
ldl Rtemp2, 0(Rtemp1)
add Rtemp2, #1, Rtemp2
stl Rtemp2, 0(Rtemp1)
cmple Rtemp2, #1000, Rtemp3
beq Rtemp3, L1
br BT monitor

L1:
original memory reference
instruction
br L3

L2:
ldah Rtemp1, Ad
lda Rtemp1, Ad
ldl 0, 0(Rtemp1)
MDA sequence

L3:

Adaptive Code

Instructions to
collect runtime

information

Figure 8: An example of Adaptive Code method on Alpha architecture

D. Multi-version code

During the program execution, an instruction may access
many different addresses, some of them aligned and some
of them not. For this particular instruction, if aligned data
addresses dominate the execution, translating them into the
MDA code sequence would incur too much overhead. On
the other hand, not translating them into the MDA code
sequence would suffer from expensive exception handling.
To solve this problem, we could generate two versions of
native code for the code segment containing such instruc-
tions. One version translates the memory instruction into
an MDA code sequence while the other version remains a
single memory operation. An example is given on the left
hand side of Figure 8. At run-time, the version to execute
would be selected according to the actual memory address
referenced.

The next option is on what granularity to generate the
multi-version code. A simple approach is to generate two
versions of codes for every memory operation. If the ad-
dress is misaligned, the MDA code sequence is executed.
Otherwise, the normal instruction is executed. This approach
is more adaptive, in which it executes the MDA code
sequence only when it is actually needed, but at the cost
of some instruction overhead – the checking instructions
do consume cycles. Perhaps a more efficient method could
be devised. After analyzing the applications, we observed
that most of MDAs occurred in hot loops and the addresses
of MDAs usually followed the same pattern. In this case
we can generate multi-version code based on basic-block
granularity.

So far, we focus more on how to turn a memory operation
into the MDA code sequence. What if after we generate
the MDA code sequence, but the original memory operation
no longer have MDA? Should we convert the MDA code
sequence back to normal memory operation? This method
may be more effective than multi-version code method, but

its implementation cost could be prohibitive. Figure 8 com-
pares the multi-version code method and this truly adaptive
method. As we can see in Figure 8, the adaptive method
needs about ten instructions (including 3 memory access
instructions and 2 branch instructions) to collect runtime
information, which is used to determine if we should replace
the MDA code sequence back to original memory operation.
Furthermore, even if we replace the MDA code sequence
back to original instructions, only two instructions (one logic
instruction and one branch instruction) are saved. Taking
all factors we discussed above into account, we believe this
seemingly more adaptive method may not be worth pursuing.

V. EVALUATION ENVIRONMENT

This section describes our test machine, the experiment
framework, the benchmarks, the compilers, and the opti-
mizations used in this experiment.

A. Machines

The mechanisms presented in Section III were evaluated
on an one-processor Alpha ES40 machine running CentOS
4.2. The processor’s on-chip cache hierarchy consists of
a split L1 instruction and data caches and a unified L2
cache. The L1 caches are 2-way set associative and 64KB
in size. The L2 cache is direct-mapped and 2MB in szie.
The memory size of the machine is 4GB.

B. Experiment Framework

We have adopted the BT framework of DigitalBridge [18]
[19] to evaluate all different MDA handling mechanisms.
DigitalBridge, which is developed by our group, is a dy-
namic binary translator. It migrates X86 binaries to the
Alpha architecture. Similar to FX!32 [2], DigitalBridge
supports X86 binary codes to run on Alpha machines. Unlike
FX!32, DigitalBridge uses on-line instead of off-line trans-
lation. DigitalBridge also employs the two-phase translation
approach. In the first phase, it executes the source binary
code on a basic-block granularity and collects profile data
to guide optimizations in the second phase. DigitalBridge is
a fully functioning system [18]. Figure 9 shows the major
components of DigitalBridge.

In this paper, all examples of MDA handling assume
X86/Alpha as the guest/host machine model.

C. Benchmarks

The full suite of SPEC CPU2000 [22] and SPEC
CPU2006 [23] benchmarks were used for evaluation in this
paper. However, the impact of MDA handling in BT systems
is determined by the frequency of MDAs in applications.
Therefore, we report performance results only for the bench-
marks that have a significant number of MDAs according to
Table I. The performance is represented as normalized ratios
in our charts, therefore, we have also reported the geometric
mean of the selected 21 benchmarks.

185

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

Interpreter

X86 Binary & SO

Translator

Static translated
code

Loader

Memory

X86 Image & So

Static translated code

Intermediate
Representation(IR)

D
isasem

ble

Dynamic
Monitor

Execute

Optimizer

Dynamic Translated Code

Figure 9: Framework of DigitalBridge

All benchmarks are compiled using Pathscale 2.4 com-
piler on an Intel Xeon machine, and the compiler options
are -Ofast -m32 -LNO:simd=0.

VI. EXPERIMENTAL RESULTS

This section evaluates different MDA handling mecha-
nisms discussed in Section III and Section IV. The execution
time we show in this section is an average of three runs for
each benchmark. Table II lists the parameters used for each
MDA handling mechanism.

A. Dynamic Profiling

An appropriate heating threshold in a two-phase binary
translation system is critical to obtain a good overall perfor-
mance. As discussed in Section III, a high heating threshold
can profile deeper into execution and uncover more potential
MDAs, but at the cost of a much greater profiling overhead.
To show the impact of different heating thresholds, we vary
the value of thresholds from 10 up to 5000 (the threshold
is a simple cumulative count over the whole execution). As
shown in Figure 10 (the baseline is TH=10), a threshold
around 50 strikes a better balance and yields the best overall
performance. A threshold smaller than 50 is insufficient
to uncover major MDA instructions, and hence will pay
later when misaligned traps are encountered. For example,
the 400.perlbench benchmark definitely needs a threshold
greater than 10. In general, a threshold greater than 500
offers little benefit. Several programs, such as 178.galgel,
164.gzip, 252.eon, 200.sixtrack, and 465.tonto, suffer from
the excessive profiling overhead with essentially no perfor-
mance gain from the reduction of misalignment exceptions.

B. Exception Handling

1) Code rearrangement: With the exception handling
method, misaligned traps will trigger the generation of
MDA code sequence. If we further reposition the newly
generated MDA code, some programs can be sped up.

1.2
1.3
1.4
1.5

or
m

al
iz

ed
)

TH=10

0.8
0.9

1
1.1

R
un

ti
m

e(
N

TH=50

TH=500

TH=5000

Figure 10: Performance with different thresholds

4.0%
6.0%
8.0%

10.0%
12.0%

ce
G

ai
n/

Lo
ss

2.0%
0.0%
2.0%
4.0%

Pe
rf

or
m

an
c

Figure 11: Performance gain/loss with code reaarangement

As shown in Figure 11, code rearrangement can speed up
464.h264ref by as much as 11%, and speed up 178.galgel
and 188.ammp by 4-5%. However, the overall performance
gain from repositioning the MDA code is marginal (only 1.5

2) DPEH method: In the DPEH method, dynamic pro-
filing in the first phase will catch some MDA instructions.
The remaining undetected MDA will be taken care of by the
Exception Handling method. Compare the DPEH method
to the Exception Handling method, as shown in Figure 12,
three programs: 464.h264ref, 471.omnetpp, and 433.milc
have more than 8% performance gain from the help of initial
dynamic profiling. However, the overall gain is only about
2%. This indicates the simple Exception Handling method
is working reasonably well.

3) Retranslation: When the initial dynamic profiling
failed to catch frequent MDAs, or when the program
incurred behavior changes, the translated code could be
ineffective. Although our exception handler based dynamic
translation will continously capture new MDAs undetected
by the initial profiling and translate them into MDA code
sequences, the cost of exception handling and later code
repositioning could be a burden. When such cases are

%

5.0%

10.0%

15.0%

e
G

ai
n/

Lo
ss

10.0%

5.0%

0.0%

Pe
rf

or
m

an
ce

Figure 12: Performance gain/loss with dynamic profiling

186

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

Table II: MDA handling mechanisms and configuration choices
Mechanism Configuration Choice Description
Direct Method none none
Static Profiling none none
Dynamic Profiling Translation thresholds The translation threshold of the binary translation system.
Exception Handling Code rearrangement A method to reposition the MDA code generated by the Exception Handler.
Dynamic Profiling

&
Exception Hanlding

Retranslation A method to retranslate a basic block when multiple MDA instructions have
been detected by the Exception Handler.

Multi-version code Mechanism to selectively generate multi-version code.

0 0%
2.0%
4.0%
6.0%
8.0%

10.0%

e
G

ai
n/

Lo
ss

6.0%
4.0%
2.0%
0.0%

Pe
rf

or
m

an
ce

Figure 13: Performance gain/loss with Retranslation

2.0%
3.0%
4.0%
5.0%
6.0%

nc
e

G
ai

n/
Lo

ss

2.0%
1.0%
0.0%
1.0%

Pe
rf

or
m

an

Figure 14: Performance gain/loss with Multi-version code

detected, simply discarding the translated code of a block,
and retranslating it may work better. Figure 13 (the baseline
is DPEH method) shows the results of retranslating a basic
block if 4 misalignment exceptions are raised in the trans-
lated code of the block at run-time. The data shows that
some benchmarks benefit significantly from retranslation,
but some other benchmarks degrade slightly. Overall, the
benefit of retranslation is not substantial.

4) Multi-version code: We generate multi-version code
on top of the DPEH method, and the decision is based on
the profile collected during the dynamic profiling stage and
the exception handling stage. For programs with changing
memory reference behavior, generating multi-version code
might work best. Figure 14 (the baseline is DPEH method)
compares the execution time with and without multi-version
code method. However, the data shows that multi-version
code method provides only marginal performance improve-
ment, about 1.1% on average while some benchmarks see
up to 4.7% of improvement.

This is because the data addresses of MDA instructions
in the benchmark suite are rather biased: they are either
misaligned or aligned most of the time. In such a case, as
long as we can efficiently identify MDA candidates, and
generate MDA code sequences for them, the performance

50%
60%
70%
80%
90%

100%

D
A

in
st

ru
ct

io
ns

Ratio<50%

0%
10%
20%
30%
40%

Pe
rc

en
ta

ge
of

M
D Ratio<50%

Ratio=50%

Ratio>50%

Ratio=100%

Figure 15: Percentage of MDA instructions classified by misaligned ratio.
Ratio = Number of MDAs of a MDA instruction / Number of memory
references of the MDA instruction

should be good. Figure 15 gives the percentage of MDA in-
structions that are always misaligned, frequently misaligned
and frequently aligned. As we can see in the figure, only
about 4.5% MDA instructions are frequently aligned.

Besides, the multi-version method incurs overhead at run-
time since the alignment checking instructions also consume
cycles. As discussed in Section IV, generating multi-version
code on basic-block granularity can help to decrease the
runtime overhead.

C. Overall Comparison

Now that we have explored the design and parameter
space for Direct Method, Static Profiling, Dynamic Profiling,
Exception Handling, and DPEH, we can compare them
against each other to see which one is more effective
on handling MDAs. For this evaluation, we compare the
execution time of the benchmarks with different MDA
handling mechanisms. Each mechanism is configured to
achieve the best performance (for Static Profiling method,
we get the profile data with train input set; and for Dynamic
Profiling method, we set the heating threshold to 50). The
result is shown in Figure 16 (all results are normalized
to the execution time of Exception Handling mechanism).
As shown in the figure, the Exception Handling method is
consistently better than other MDA handling mechanisms:
16% better than Dynamic Profiling, 10% better than Static
Profiling and 68% better than Direct Method on average.
However, the DPEH method gains additional 4.5% on top
of the Exception Handling method.

As discussed in Section III, for applications that have
frequent memory reference behavior changes, the Dynamic
Profiling method may not work very well. As shown in

187

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

4.33 5.29

1 5

2

2.5

3

N
or

m
al

iz
ed

)

0.5

1

1.5
R

un
tim

e
(

Exception Handling DPEH Dynamic Profiling Static Profiling Direct Method

Figure 16: Performance for different MDA handling mechanisms

Table III: The number of MDAs that cannot be detected by the Dynamic
Profiling mechanism (Heating threshold = 50)

Benchmarks Num of MDAs Benchmarks Num of MDAs
164.gzip 1.56E+08 433.milc 1.34E+08
252.eon 24630 434.zeusmp 1716
178.galgel 3436 435.gromacs 1820
179.art 3.12E+08 437.leslie3d 1716
188.ammp 0 450.soplex 9.33E+08
200.sixtrack 235950 453.povray 2.41E+08
400.perlbench 57874640 454.calculix 2609
464.h264ref 9347 465.tonto 116450
471.omnetpp 38979 470.lbm 0
483.xalancbmk 8.32E+09 482.sphinx3 1
410.bwaves 4.15E+10

Table III, when the heating threshold is 50, there are still a
large number of MDAs which can’t be detected by the Dy-
namic Profiling method in 164.gzip, 179.art, 483.xalancbmk,
410.bwaves, 433.milc and 453.povray. As we can see in Fig-
ure 16, these six benchmarks are exactly the applications that
suffer significant performance degradation compared with
DPEH method (8% for 164.gzip, 14% for 179.art, 340% for
483.xalancbmk, 433% for 410.bwaves, 15% for 433.milc
and 9% for 453.povray). For Static Profiling mechanism,
the performance of most benchmarks is similar to DPEH
method. Table IV summarizes the number of MDAs which
are not detected while profiling with train input set. As
we can see in Table IV, while running with ref input set,
there are still a large number of MDAs in 252.eon, 179.art
and 450.soplex. The performance of these benchmarks is
significantly lower when compared with DPEH (91% for
252.eon, 13% for 179.art and 155% for 450.soplex). The
Direct Method is generally worse than all others, simply be-
cause it indiscriminately increases the instruction overhead
for all non-byte memory operations.

VII. SUMMARY AND CONCLUSIONS

Binary translation has been used widely in various ap-
plications such as ISA migration, runtime code inspection
and optimization, and dynamic instrumentation. A critical
but under-investigated issue is how to efficiently handle

Table IV: The number of remaining MDAs while profiling with train input
set

Benchmarks Num of MDAs Benchmarks Num of MDAs
164.gzip 46 433.milc 6
252.eon 3.22E+09 434.zeusmp 644100
178.galgel 4930086 435.gromacs 0
179.art 3.6E+09 437.leslie3d 21168
188.ammp 0 450.soplex 4.03E+09
200.sixtrack 0 453.povray 0
400.perlbench 1244769 454.calculix 1.83E+08
464.h264ref 1020 465.tonto 262
471.omnetpp 48638638 470.lbm 0
483.xalancbmk 12761 482.sphinx3 0
410.bwaves 0

misaligned data accesses. Existing techniques either incur
excessive instruction overhead, or cannot adapt to the change
of memory access behavior at runtime.

In this paper, we have studied the strength and weakness
of many existing MDA handling techniques. The direct
translation method which translates every non-byte memory
operation into the MDA code sequence is naive and incurs
excessive overhead. Using static profile feedback may fail
to catch those MDA candidates that do not show up with
the training runs. Using dynamic profiling is less sensitive
to profile selection, but may fail to catch important MDA
candidates during the profiling phase. Continuous profiling
is more flexible in that it does not have to be limited to only
the profiling phase. However, it may incur unacceptable high
profiling overhead.

We have proposed an Exception Handler based mecha-
nism which can be considered a light weight continuous
profiling of MDA operations. As long as memory operations
are executed without misaligned exceptions, they can run at
full speed. When a misaligned exception occurs, the excep-
tion handler will translate this particular memory operation
into the MDA code sequence. Based on this light weight
continuous profiling approach, we further enhance it with
dynamic profiling to catch many MDA candidates at the
early stage. This combination significantly reduces the cost

188

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

of MDA exception handling. We also make our method more
adaptive by dynamically translate those memory operations
that change between MDA and aligned accesses into a
two version code. Furthermore, this method is improved
by code repositioning and retranslation optimizations to
maintain good instruction spatial locality. We have shown
that this new method is more adaptive to program behavior
change than all existing methods, as it outperforms the static
profiling method by 14%, the dynamic profiling method
by 20%, and the direct translation method by 73%, on
21 SPEC2000 and SPEC2006 benchmark programs with
frequent misaligned data accesses.

ACKNOWLEDGMENT

This paper is supported by a project of the Nation
Basic Research Program of china (No. 2005CB321602),
a project of the National Natural Science Foundation of
China (No. 60736012) and a project of the National High
Technology Research and Development Program of China
(No. 2007AA01Z110). This work is also supported by NSF
CNS-0834599.

REFERENCES

[1] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, S. G. Robinson.
Binary translation, Communications of the ACM, 36(2), 69–81, Feb.
1993.

[2] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S.
B. Yadavalli, and J. Yates. FX!32: a Profile-Directed Binary Translator,
IEEE Micro, vol. 18(2),1998.

[3] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang
and Y. Zemach. IA-32 Execution Layer: a two-phase dynamic transla-
tor designed to support IA-32 applications on Itanium based systems,
Proceedings of the 36th International Symposium on Microarchitecture,
2003.

[4] F. Bellard. QEMU, a Fast and Portable Dynamic Translator, Proceed-
ings of the 2005 USENIX Annual Technical Conference, 2005.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent
dynamic optimization system, In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and
Implementation, pages 1-12. New York, NY, USA, June 2000.

[6] W. Chen, S. Lerner, R. Chaiken, and D. Gillies. Mojo: A dynamic opti-
mization system, In Proceedings of the ACM Workshop on Feedback-
Directed and Dynamic Optimization FDDO-3, December 2000.

[7] V. Packirisamy, S. Wang, A. Zhai, W. Hsu, P. Yew. Supporting
Speculative Multithreading on Simultaneous Multithreaded Processors,
HiPC 2006, 148-158.

[8] N. Nethercote, J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation, Proceedings of the 2007 ACM SIG-
PLAN conference on Programming language design and implementa-
tion, June 10-13, 2007, San Diego, California, USA.

[9] P. P. Bungale, C. Luk. PinOS: A Programmable Framework for
Whole-System Dynamic Instrumentation, Proceedings of the 3rd
ACM/USENIX International Conference on Virtual Execution Envi-
ronments(VEE 2007), June 2007.

[10] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, Y. Wu. LIFT: A Low-
Overhead Practical Information Flow Tracking System for Detecting
Security Attacks, MICRO 2006, 135-148.

[11] J. E. Smith, R. Nair. Virtual Machines: Versatile Platforms for Systems
and Processes, Elsevier, Morgan Kaufmann Publishers, May 2005,
ISBN 1-55860-910-5.

[12] J. L. Hennessy, D. A.Patterson. Computer Architecture: A Quantitative
Approach, 4rd ed. Elsevier, Morgan Kaufmann Publishers, SEP 2006,
ISBN-13:978-0-12-370490-0, ISBN-10:0-12-370490-1.

[13] Dehnert, Grant, Banning, Johnson, Kistler, Klaiber, Mattson. The
Transmeta Code Morphing Software: using speculation, recovery, and
adaptive retranslation to address real-life challenges, Proceedings of
the International Symposium on Code Generation and Optimization,
2003.

[14] B. Coon, G. D’Souza, P. Serris. Patent: Pipeline Replay Support for
Unaligned Memory Operations, United States Patent, 7134001B1,2006.

[15] R. J. Hookway, M. A. Herdeg. Digital FX!32: Combining Emulation
and Binary Translation, Digital Technical J., Vol. 9, No.1, 1997, pp.
3-12.

[16] P. J.Drongowski, D. Hunter, M. Fayyazi, D. Kaeli. Studying the
Performance of the FX!32 Binary Translation System, Proceedings of
the 1st Workshop on Binary Translation , Newport Beach, CA, Oct,
1999.

[17] C. Zheng, C. Thompson. PA-RISC to IA-64: transparent execution,
no recompilation, IEEE Computer, Mar, 2000.

[18] T. Feng, W. Chenggang, Z. Zhaoqing, Y. Hao. Exception Handling in
Application Level Binary Translation, Journal of Computer Research
and Development, 2006, 2166-2173.

[19] J. Li, Ch. Wu. A New Replacement Algorithm on Content Associative
Memory for Binary Translation System, 1st Workshop on Architectural
and Microarchitectural Support for Binary Translation, June, 2008.

[20] Compaq Computer Corporation. Alpha Architecture Handbook, 1998.

[21] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Vol. 1-3 2006.

[22] Standard Performance Evaluation Corporation. SPEC CPU2000
Benchmarks, http://www.specbench.org/osg/cpu2000.

[23] Standard Performance Evaluation Corporation. SPEC CPU2006
Benchmarks, http://www.specbench.org/osg/cpu2006.

[24] D. R. Ditzel. Transmeta’s Crusoe: Cool chips for mobile computing.
In IEEE, editor, Hot Chips 12: Stanford University, Stanford, Califor-
nia, August 13-15, 2000.

189

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 31, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

