On Improving Heap Memory Layout
by Dynamic Pool Allocation

Zhenjiang Wang'?2, Chenggang Wu! *

'Key Laboratory of Computer System and Architecture,
Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, China
2Graduate University of Chinese Academy of Sciences,
Beijing, China
{wangzhenjiang, wucg}Qict.ac.cn

Abstract

Dynamic memory allocation is widely used in modern programs.
General-purpose heap allocators often focus more on reducing their
run-time overhead and memory space utilization, but less on ex-
ploiting the characteristics of their allocated heap objects. This pa-
per presents a lightweight dynamic optimizer, named Dynamic Pool
Allocation (DPA), which aims to exploit the affinity of the allo-
cated heap objects and improve their layout at run-time. DPA uses
an adaptive partial call chain with heuristics to aggregate affinitive
heap objects into dedicated memory regions, called memory pools.
We examine the factors that could affect the effectiveness of such
layout. We have implemented DPA and measured its performance
on several SPEC CPU 2000 and 2006 benchmarks that use exten-
sive heap objects. Evaluations show that it could achieve an average
speed up of 12.1% and 10.8% on two x86 commodity machines re-
spectively using GCC -O3, and up to 82.2% for some benchmarks.

Categories and Subject Descriptors
ment]: Allocation/deallocation strategies

D.4.2 [Storage Manage-

General Terms Management, Performance

Keywords pool allocation, adaptive partial call chain, data layout,
dynamic optimization

1. Introduction

The huge speed gap between modern processors and their memory
has long been a main barrier that limits the performance of com-
puter systems. The trend shows no relief in the foreseeable future.
A great deal of efforts have been geared toward coping with this
problem. They range from architectural support to compiler opti-
mizations. Many try to use the cache hierarchy effectively from
various aspects, including affinity-aware cache data placement on
CMP, improving the data locality [7] [8] [9] [6] [10] [11] [18] [3],
hiding latency using prefetching [18] [13], to name just a few.

* To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CGO’10, April 24-28, 2010, Toronto, Ontario, Canada.
Copyright © 2010 ACM 978-1-60558-635-9/10/04. .. $10.00

92

Pen-Chung Yew

Department of Computer Science and Engineering,
University of Minnesota at Twin-Cities,
Minnesota, USA
Institute of Information Science, Academia Sinica,
Taiwan

yew@cs.umn.edu

Improving data locality is essential to bridge the speed gap. It
could reduce cache misses and thus reduce the memory bandwidth
requirement. In some programs, the heap objects occupy a large
portion of their work space. As a result, it is critical to improve the
locality of such data objects in the heap.

Some programming languages (e.g., Lisp, Java and C#) have an
automatic memory management mechanism, such as garbage col-
lection (GC). Garbage collectors can copy some or all of the reach-
able objects into a new area in memory, and update all references to
those objects as needed, to improve overall data locality [5]. When
using garbage collectors to manage heap objects at run-time, the
layout of the objects could be improved by considering their fre-
quent access patterns [10], affinity [6], and other run-time charac-
teristics [16].

However, there exist many applications written in languages
that do not have GC support at run-time. Moving allocated ob-
jects to improve their memory layout at run-time is a great chal-
lenge because it is difficult to update all relevant pointers due
to potential aliases. Hence, once data objects are allocated, their
memory layout cannot be easily changed unless they are freed
or moved explicitly by the programmers. Many efforts have thus
been directed toward the layout of heap objects at their allocation
time [11] [15] [2] [7] [18].

Pool allocation is a technique that aggregates heap objects at
the time of their allocation into separate memory pools in order to
control their layout. Lattner et al. [11] proposed a compiler tech-
nique to improve cache locality by pool allocation. They identify
distinct data structures such as lists, graphs, or trees in the source
programs using sophisticated static program analysis and heuris-
tics. Such objects are then segregated into separate pools. It could
gain a significant performance improvement by reducing data cache
misses.

However, in many cases, source programs are not available for
such analysis and optimizations. To support data layout improve-
ment directly on the binaries at run-time, some techniques have
been proposed [15] [2] [7] [3]. They collect profiling information
in the prior runs, and classify objects into categories by their char-
acteristics such as access pattern, access frequency or the lifetime
of the objects. In later runs, objects in the same category are allo-
cated in the same pool to reduce potential cache misses. Such an
approach could provide a rather good estimation of the run-time
behavior using a representative training input set, and hence, could
be used to improve data layout for better memory performance.

In this paper, we present a Dynamic Pool Allocation (DPA)
scheme. It analyzes the relationship among heap objects and ag-
gregates the affinitive ones into pools guided by adaptive call chain

information - all done at the run-time. It aims to eliminate the extra
profiling runs and overheads, as well as the difficulty of finding rep-
resentative training input sets. Experimental results show that our
approach improves the performance by an average of 12.1% and
10.8% (up to 82.2%) on two x86 machines for some SPEC CPU
2000 and 2006 benchmarks that contain extensive heap objects and
their usage.
Our paper makes the following contributions:

e A transparent dynamic approach to improve the performance
of pointer intensive programs by controlling the layout of allo-
cated heap memory space. It is done without the requirement
of re-compilation or carrying profiling information from prior
profiling runs.

e A new strategy that uses adaptive partial call chain (APCC) to
eliminate the effect of wrappers around default system memory
allocators.

e A scheme that uses heuristics based on affinity analysis to
aggregate related objects in the same memory pool even if those
objects are allocated at different call sites.

e A study on the multitude of factors that can impact the perfor-
mance of DPA.

e A lightweight implementation of DPA that shows improvement
in memory performance and running time of heap-intensive
programs.

The organization of the remaining paper is as follows: Section 2
introduces the related work; Section 3 explains our approach; Sec-
tion 4 illustrates our system. Section 5 contains some evaluation.
Finally, section 6 concludes the paper.

2. Related Work

Since a garbage collector can identify all references to all objects,
it has the ability to move objects safely at run-time. Many schemes
aim to improve garbage collectors through exploiting data locality
in the heap [6] [10] [16]. They use online object-instance sampling
techniques to discover frequent access patterns. From time to time,
GC rearranges data objects according to the identified access pat-
terns. Their results show that great performance improvement could
be obtained for some benchmarks.

For applications that do not have GC support, Chilimbi et al. [9]
presented a semi-automatic tool, called ccmorph, which could re-
organize the layout of homogeneous trees at run-time. It relies on
annotations provided by the programmers to identify the root of a
tree and to indicate whether the layout reorganization is safe. They
also describe another tool, ccmalloc, which is a malloc variant that
accepts hints from the programmers to allocate one object near an-
other for better locality. Both tools require the source code and the
hints from the programmers.

Lattner et al. [11] proposed a compiler framework that segre-
gates distinct instances of heap-based data structures into sepa-
rate memory pools. It is driven by their pointer analysis algorithm,
called data structure analysis (DSA). The approach also needs the
source code.

There exist some profile-based schemes [15] [2] [7] [3] for ap-
plications without their source code. Their first step is to collect
profile information. Chilimbi et al. [7] presented a profile-based
analysis for co-allocating contemporaneously accessed heap ob-
jects in the same cache block. The hot data stream, i.e., a regular
data access pattern that frequently repeats, is obtained through pro-
filing. In [15], they use heuristics to predict accessing and lifetime
behavior of heap objects when they are allocated. They considered
a variety of information available at the time of object allocation.
It includes information from stack pointer, path pointer and stack

93

list 1

B Bl | N\

(a) address space when using general allocator

_ NI |]]
pool for list 1 pool for tree 1 pool for list 2

(b) address space when using pool allocator

N\

tree 1

]

list 2

Figure 1. A typical scenario of memory space allocation

contents. Their scheme could reduce the number of page faults. A
representative training input set is necessary in these approaches.
However, it may not be easy to find such “representative” training
input set for some real applications.

What the users prefer is a transparent mechanism that needs no
extra information they have to provide, nor extra profiling work
they have to do, except the application binary itself. Qin Zhao
et al. [18] proposed a dynamic heap allocation scheme in Dy-
namoRIO. They treat each static memory allocation site as a sin-
gle pool, hence, the pools and the static allocation sites could be
mapped one-to-one to each other. It can improve the locality for
some programs, but does not work on some others as discussed in
Section 3.

3. Dynamic Pool Allocation (DPA)

Most general-purpose heap allocators such as dlmalloc [12], a
widely used memory allocator in Linux system, focus primarily on
reducing the run-time overhead and enhancing the memory space
utilization. An object is usually allocated in a best-fit fragment, ig-
noring the correlation with other objects. Figure 1 shows a scenario
of heap memory layout after 3 distinct data structures are allocated.

In general-purpose allocators, only the allocation sequence
and/or fragmentation status, as well as the object size are consid-
ered. Hence, objects of the same data structure could scatter around
in the memory space, as Figure 1a shows. In Figure 1a, traversals
of one data structure usually need to access several memory pages
and several cache lines. When the working set size is large, it could
cause significant TLB misses and data cache misses.

If we could design a mechanism to allocate them in 3 different
pools, and form the layout as shown in Figure 1b, the locality
can often be substantially improved. Component objects of each
data structures are allocated in their corresponding pool next to
each other, so that they are likely to reside in the same cache line
and memory page. Therefore, traversals of these data structures
could cause fewer cache and/or TLB misses. Moreover, hardware
or software prefetching becomes easier when traversal matches the
allocation sequence (the strides are regular in this case).

The key of dynamic pool allocation is deciding which pool an
object should belong to. However, it is not easy to get high-level
data structure information without the source code. One possible
scheme is to regard all heap objects allocated at the same call site
as affinitive, and put them into one object group. An object group
is usually corresponding to a pool. This call-site based strategy can
work well in many cases [18]. However, there exist two challenging
issues that often render such schemes less effective.

The first is caused by using wrappers around the memory al-
location routines such as malloc. Some programmers prefer to
use wrappers to enhance the reliability of their programs. Fig-
ure 2 shows a typical wrapper in 300.twolf of SPEC CPU 2000.

char *safe malloc(size)
unsigned size;
{
char *p;
extern char *malloc() ;
if ((p = malloc(size)) == (char *) 0) {
cleanupHandler(heap no mem,"safe malloc");

}

return p;

Figure 2. A malloc wrapper in 300.twolf

Almost all heap objects are allocated through the wrapper rou-
tine safe_malloc in the program. The call sites of malloc inside
safe_malloc become useless for object classification. It could trick
the scheme to aggregate all heap objects into one pool. This kind of
wrapper is quite common in many programs. For example, 197.vpr,
253.perlbmk and 300.twolf all have more than 80% of their heap al-
location through such wrappers. What makes it worse in some cases
is that some wrappers could even wrap memory allocation routines
under several layers, such as those in 2.3% of heap allocations in
483.xalancbmk.

The second issue is caused by the fact that the heap objects of
a data structure could be allocated through several different call
sites. Using the above mentioned call-site based schemes, they
will be allocated into several different pools and lose some affinity
advantage. Two main reasons lead to such a phenomenon.

One is from the programmers themselves. For example, nodes
of a linked list may be allocated and inserted from different code
regions in a program. The other is caused by the compiler. It may
cause a memory allocation call site to be duplicated several times
by loop unrolling or recursive function inlining. All these dupli-
cated call sites are from the same original call, and are supposed to
build the same data structure. Again, using a call-site based strat-
egy, objects allocated from these call sites will be put into different
pools. For example, 55.4% of call sites in 197.parser are processing
the same data structures with others.

A good pool allocation policy should accommodate these two
challenging issues and distinguish the relationship of these heap
objects correctly.

3.1 Adaptive Partial Call Chain

A call chain could be traced by the content of a dynamic call stack
(stack unwinding). It starts from the current procedure, followed
by its caller, caller’s caller and so on. It contains useful context
sensitive information. Hence, we could use it to resolve the issue
caused by wrappers. An important issue here is how far back we
should trace the call chain in order to identify the wrappers that
have multiple layers.

One straightforward option is to use the full call chain. It can
eliminate the problems caused by wrappers because we could use
different callers of a wrapper to produce different call chains. How-
ever, using the entire call chain may make the calling context over-
specialized. It could produce too many object groups with very few
objects in each. This could, in turn, lead to too many pools, wasting
the pool space, and making the data layout too sparse to take advan-
tage of its spatial locality. Besides, using the entire call chain could
incur large overhead at run-time, especially for those programs that
have very long call chains, or functions that are recursively invoked.

Another option is to select a partial call chain of a fixed length
n, called n-PCC in the rest of the paper. It has less overhead than in
the full call chain if n could be selected appropriately. However, the

94

optimal chain length could vary at different call sites. For example,
in our study, 1-PCC is enough for most call sites in 197.parser,
while some objects need 4-PCC to eliminate the impact of wrappers
in 483.xalancbmk.

In our approach, we design an Adaptive Partial Call Chain
(APCC) strategy, which uses a variable length that is adaptive to
the calling context. We start from the allocator’s direct caller, called
procedure A here for the ease of reference. We then analyze the data
flow of the allocated memory pointer. In most cases, if procedure
A does not process the allocated object or link the allocated object
with other ones, but simply passes the pointer to its caller by return
value or call-by-reference parameter, we could be pretty sure that
procedure A is a wrapper. The length of the APCC is then increased
by 1. Their analysis is repeatedly applied up the call chain until a
caller does not show the behavior of a wrapper. Using the APCC
strategy, we could keep enough context information to eliminate
the impact of wrappers. Later, we could build an object group for
each APCC.

The experimental data shows that the average length of APCC
is 1.44 in our evaluated benchmarks, and the maximum length is
4 (in 483.xalancbmk). In general, it only needs to analyze dozens
of instructions to recognize a wrapper on average. Moreover, after
an APCC is analyzed, the result can be used for later allocations
without re-analysis. Therefore, the overhead is amortized by all the
allocations from the same APCC. Evaluation in Section 5.5 shows
that such an overhead is quite small.

3.2 Object Group Merging

As discussed earlier, the objects allocated in several different call
sites could belong to the same data structure in some cases. Call-
site based schemes will put them into different object groups. To
merge them back into one object group, we propose to use the
Storage Shape Graph (SSG)

3.2.1 Storage Shape Graph

Our SSG is derived from [4] [14]. It is a tuple of the form
(V, H, E).V is aset of variable nodes representing the global/stack
variables. H is a set of heap nodes which represent the object
groups of heap objects. EC(VJH)xHXO is a set of graph
edges, each of which abstracts a set of pointers. When a pointer
points from some member field in a structure or class, O is the field
offset.

Figure 3a gives a code fragment that builds a linked list, whose
corresponding SSG is shown in Figure 3b. The heap nodes in the
graph stand for the object groups generated by our APCC scheme.
The edge (h1, h2, 0) means that the data field (offset is 0) of objects
in h; is a pointer which points to the objects in ha.

Building an SSG needs the points-to information. The variables
are extracted from the binary, and a points-to analysis, like [1]and
[17], can be applied.

3.2.2 Affinity Recognition

We define two types of object affinity for objects of the same type.
1) Objects are of type-I affinity if they are linked to form a data
structure, such as a list, a tree, or a graph. These objects are of-
ten referenced together when the data structure is being traversed.
2) The member fields in type-I affinitive objects can be pointers,
which point to objects of another type. When traversing the data
structure and accessing the fields, those objects are usually refer-
enced together. We consider those objects type-II affinitive.

An object group consists of a number of objects. The pointers
pointing to them could be kept in one of three different styles:
(1) These objects may keep their pointer in some member field of
themselves to form a data structure, which makes the objects type-
I affinitive; (2) Sometimes the pointers of these objects are kept

typedef struct {

int *data;

struct node *next;
} node;

node *head;

head = (node*) malloc(sizeof(node)); // heap node h;
head->data = (int*) malloc(sizeof(int)); // heap node h,
head->next = NULL;

void foo() {

while (...) {

node *temp;
node *here = head;

// traverse “here” to a proper node
temp (node*) malloc(sizeof(node)); // heap node h;
temp->data = (int*) malloc(sizeof(int)); // heap node h,
temp->next = here->next;
here->next = temp;

(a) a code fragment

) G &

(head,h1,0) (here,np.0) (T h3’°) (e)
EEY
1 ™ 3
i S s R
(h1)h2)0) (h39h470)
¥ \
h, hy

(b) SSG of the code fragment

Figure 3. A code fragment and its SSG

in some member field of another data structure’s nodes or another
array’s elements. In this case, the objects are of type-II affinity;
(3) Infrequently, the pointers of these objects are kept in different
ways, making some objects not affinitive with the others. We cannot
avoid the last style even using a full call chain, but fortunately, it
seldom happens. Since object groups are usually accessed using the
first two styles, we consider that the objects in an object group are
always affinitive.

However, not all affinitive objects are in the same object group
because they might have different APCCs due to being allocated
at different call sites. The purpose of object group merging is to
identify these affinitive object groups and merge them for better
locality. We use an SSG to realize the merge process.

In an SSG, different heap nodes whose objects are affinitive
have some key attributes. If the objects in two heap nodes are type-
I affinitive, the type of these objects are the same and there is an
edge connecting them. If the objects are type-II affinitive, the type
of these objects are also the same, but they will have edges from
the same heap node or from heap nodes whose objects are type-I
affinitive, and the edges have the same offset. We merge heap nodes
in an SSG using these key attributes.

Take the SSG in Figure 3b as an example. Heap nodes hi and
hs are of the same type, and they have an edge (h1, h3,4), so they

95

! (here,h 3,0) ! ! (here,h;3,0) !

(head, h1&3,0) (temp hies,0) (headh &3,0> (temp hyes,0)

h1&3 N h|&3
‘ (hl&3’hl&3’4) ‘ (h1&3,]’11&3,4)
(hig3,h5,0) (h;3,h4,0) (hig3,h284,0)
¥ S
h, hy hogs
(a) hy and h; merged (b) h, and hy merged

Figure 4. An example of object group merging

are type-I affinitive and could be merged, as Figure 4a shows. Heap
nodes hg and h4 have the same type, and edge (higs, h2,0) and
(h1g&s3, ha,0) have the same beginning heap node and offset, so
ho and hg4 are type-II affinitive. The SSG after they are merged is
shown in Figure 4b.

To recognize the affinity relationship between two heap nodes,
we should first find out if their types are the same. However,
type information is usually missing in executable binaries. In the
experimental system we implemented, we assume that two objects
of the same size will have the same type. Although this assumption
may not be always true, it works reasonably well in most cases.
Such errors will only affect the layout of heap objects. It will not
affect the program correctness.

The merging is important when the affinity objects are left in
too many object groups, or the access sequence jumps between
the object groups frequently. The experimental data in Section 5.2
shows that 4 out of 12 benchmarks have distinct merging, and 2 of
them have obvious speedup.

3.3 Allocate Memory Space for Merged Object Groups

After merging object groups, the next step is to allocate memory
pools for them. Since we cannot predict how much memory space
an object group needs, we have to find a way to allocate appropri-
ate amount of memory space for its memory pool. A large memory
space that is enough for any object group will be a waste of mem-
ory, because it uses the worst-case size for all memory pools. Our
approach allocates memory space in units called pool segments.
When the allocated segment of an object group fills up, another
segment of the same size will be allocated. In our empirical study,
we tested different pool segment sizes and found that a 4096-byte
segment works the best, same as the virtual page size.

In the pool segment of an object group, we can use a general
free-list based allocator with coalescing of adjacent free objects.
This allocator aims to process objects of various sizes, so it uses
object headers to keep the management information. However, in
most cases (78.6% in our statistics), objects in an object group are
of the same size. Therefore, we can use a lightweight allocator
for these fixed size objects [18], and the object headers can be
eliminated. A typical allocation/deallocation operation just needs
to change a pointer or a free list. Both space and time can be saved.
The effect of object header elimination is shown in Section 5.5.

However, allocating memory pools to all object groups may not
be necessary and beneficial. Here, we consider two factors that
could affect our decision to allocate a memory pool to an object
group: number of objects in the object group and the size of the
objects.

3.3.1 The Number of Objects

In many programs, some object groups have a very small number
of objects, for example, a short linked list with only a few nodes
allocated. We call them small object groups. Allocating memory
pools to such small object groups is not very useful for improving
locality. Besides, allocating memory pools to them will produce
pool segments that are only sparsely populated. It will not only hurt
the memory utilization but also the data locality.

To avoid this, we set a threshold on the number of objects in an
object group before memory pools are allocated to them, and leave
the allocation of memory space for the small object groups to the
operating system.

A proper threshold is needed to filter out small object groups. A
low threshold may allocate too many sparsely populated memory
pools. Setting the threshold too high may lose too many optimiza-
tion opportunities. Experiments in Section 5.3 show that a threshold
of 100 is suitable for most programs on the systems we tested.

3.3.2 Object Size Threshold

The main benefit of pool allocation is from the improvement of
locality. However, a large object can occupy several cache lines,
which makes the same field of adjacent objects in different cache
lines. A large object also makes the object header insignificant. As
a result, the larger an object is, the less benefit we will gain from
allocating to memory pools. Besides, for a pool segment of size s
and objects of the fixed size n, since s may not be a multiple of n, a
remainder of [0, n) bytes may be wasted. Therefore, a larger object
size may waste more memory. Our experiments in Section 5.4 show
that the threshold of 128 bytes is suitable.

4.

We implemented our approach as a dynamic optimizer on Linux
operating systems (IA32 ISA), named DigitalBridge-dopt . In this
section, we present our system in detail.

The first step is to take over the memory allocation functions:
the default system allocators need to be replaced with our DPA allo-
cator at the beginning of the program execution. Several approaches
are possible for this purpose. In our current implementation, we use
the LD_PRELOAD environment variable [13] to intercept the main
function, and modify the global offset table entries of the allocators
(including new and delete). After that, the main function is resumed
and the execution starts. In this way, when the program executes a
memory allocation call, it will call DPA allocator instead.

The DPA allocator has the same interface as the system alloca-
tor: the request allocation size is passed to the allocator, and then
the allocator returns a free memory object to the program. What
DPA allocator controls is where (from which pool segment) to al-
locate the requested memory. As a result, DPA allocator does not
affect the correctness of the program.

Figure 5a shows the basic implementation of our DPA allocator.
‘When the DPA allocator receives an allocation request, the first step
is to determine the APCC by the APCC Generator as described in
Section 3.1. After that, the APCC is used to look up a hash table,
the APCC-OG Table. Each entry of the table contains the analyzed
APCC and its associated object group ID. If the APCC appears for
the first time, it has no entry in the table. We then use the Affinity
Analyzer to add a new heap node in the SSG and try to merge it
with other heap nodes by the heuristics described in Section 3.2.2.

If the heap node is successfully merged with another heap node
whose object group ID is g, a new entry <APCC, g> is inserted
in the APCC-OG Table. If the heap node cannot be merged with
other heap nodes, we build a new object group with ID g’ and insert
<APCC, g’> into the table. The object group ID and the request

Implementation

96

} }

APCC check
Generator variable v
¥ ¥
Compound Table APCC
| Shor POC | Generator
APTC(;OG Affinity Table = fi
able . P inity
Analyzer APCC-0OG Analyzer
Table I
A, *
Pool SSG Pool SSG
Allocator Allocator

} }

(a) basic implementation (b) optimized implementation

Figure 5. Structure of DPA allocator

are sent to the Pool Allocator, which allocates memory space as
described in Section 3.3.

Note that this basic implementation has to analyze the length of
APCC by the APCC Generator and look up the APCC-OG Table
for every memory allocation request. It could incur a large overhead
when the requests for allocation are frequent. Hence, we optimize
it as shown in Figure 5b. The two optimizations are on the critical
path to reduce the overhead.

(1) To reduce the overhead of getting APCC for each incoming
request, we add an Short PCC Table. After APCC Generator gets
an APCC, it can also get its corresponding shorter n-PCCs. These
shorter n-PCCs are recorded in the Short PCC Table. When a
request comes, we first look up the Short PCC Table with its 1-
PCC. If the 1-PCC matches an entry in the table, we look up the
table again with its 2-PCC. The looking up repeats until no entry
is matched. In this way, we can get a PCC and check whether it is
in the APCC-OG Table. If it does not hit, it means a new APCC
appears. The APCC Generator is invoked to obtain the new APCC
and update the Short PCC Table.

For incoming requests, the Short PCC Table can get the correct
APCC so long as the APCC has been analyzed because all of its
corresponding shorter n-PCCs are in the table. The overhead of
looking up the Short PCC Table is much smaller than the overhead
of the analysis using APCC Generator. Finally, since there is no
identical n-PCC in the two tables, we combine them together as the
Compound Table.

(2) To reduce the overhead of looking up the Compound Table,
we instrument some code at the outermost call site of an APCC
to provide its associated object group ID directly. We do this only
when the next allocation (after executing the instrumented code)
has surely the very APCC we want. For example, an APCC of
length 2 has an outermost call site S. The call site S is not in a
wrapper function, but it calls a wrapper safe_malloc. If the call at
S is not an indirect call, and safe_malloc does not call any other
functions before it calls the allocator, and the call to the allocator in
safe_malloc cannot be skipped by the control flow transfer, we can
conclude that when safe_malloc is called from S, the next allocation
must have the very APCC. Hence, we instrument at the call site S to
provide the associated object group ID by a global variable v. The
DPA allocator first checks whether v is a valid object group ID. If
so, the DPA allocator calls the Pool Allocator with the ID and reset
v to an invalid ID. This can avoid looking up the APCC-OG Table
in many cases.

#1 #2
CPU Family Intel Northwood | Intel Harpertown
Cores 1 4
Frequency 2.40GHz 2.33GHz
L1I Cache Size 32kB 32kB
L1D Cache Size 32kB 32kB
L2 Cache Size 512kB 6144kB
Memory Size 2GB 16GB
oS Linux 2.6.27 Linux 2.6.26

Table 1. Experiment platforms

Name Lang Description
175.vpr C FPGA circuit placement and routing
197 .parser C word Processing
253.perlbmk C PERL programming language
300.twolf C place and route simulator
197.art C image recognition / neural networks
183.equake C seismic wave propagation simulation
188.ammp C computational chemistry
473.astar C++ path-finding algorithms
483.xalancbmk | C++ XML processing
447 .dealll C++ finite element analysis
453.povray C++ image ray-tracing
482.sphinx3 C speech recognition

Table 2. Evaluated benchmarks

5. Evaluation

In this section, we evaluate different strategies and factors dis-
cussed in Section 3. We evaluate our system on two different IA32
architectures. The hardware and operating system information are
shown in Table 1. We elide some data on #2 when they are similar
to those on #1. The C and C++ library on the system implements
malloclfree using a modified Lea allocator [12], which is a high
quality general-purpose allocator. All the runtimes shown in this
section are the average time of three executions of the program.

The benchmarks we use are SPEC CPU 2000 and SPEC CPU
2006. They are compiled by GCC 4.3.2 at -O3 and with the refer-
ence input set. We select the benchmarks shown in Table 2 by the
policy that their objects allocated in memory pools occupy more
than 1% of all heap data in use on average. The runtimes of the
other benchmarks are not affected by our optimizer. As an experi-
ment, we replace the customized allocator in 197.parser with direct
calls to malloc/free, because its customized allocator has semantics
identical to malloc/free.

Our system uses APCC with object group merging. The pool
segment size, object number threshold, and object size threshold
are 4096 bytes, 100 and 128 bytes respectively. When analyzing
the impact of one factor, the others are fixed at the above values.

5.1 Adaptive Partial Call Chain

DPA uses the Adaptive Partial Call Chain (APCC) strategy to
build the object groups before object group merging. Alternative
strategies include the fixed length partial call chain (n-PCC) and
full call chain (FCC).

Figure 6 shows the normalized runtime of the benchmarks when
using different strategy to generate object groups. The baseline is
the runtime without pool allocation. The bars illustrate the perfor-
mance of 1-PCC, 2-PCC, 3-PCC, 4-PCC, FCC and our APCC, re-
spectively. The figure shows the trend that the average performance
decreases when the length of PCC increases. The reason is that the

97

20%

15%

=)
X

5% -

groups / all pool segments

0% -

Pool segments of merged object

& & & FFSSFSSP
S O F & o &
NS SRR S M N AR S

N Ff;y » N P Nel v

Figure 7. Pool segments of merged object groups

® with object group merging

o Owithout object group merging
E 10
£
= 09
k)
S
= 08
g
=
2 0.7
0.6
S & N S N
oF & & & oF 09‘3& S & &S 4‘&@@ &
DA N L A R CHIPN S S &
@qf;-,’»‘?”a RN N S IC VS

Figure 8. Normalized runtime with/without object group merging

identification of the longer call chain incurs more overhead. The
trend is especially obvious for 197.parser because it has quite a
few allocations (nearly one billion), and its call chain is often very
long. n-PCC (n>1) is usually worse than 1-PCC, but it outperforms
1-PCC in 300.twolf and 483.xalancbmk when wrappers are used.
Our APCC strategy has the best average performance (3% to 13%
better than others) because it is adaptive to different call sites.

5.2 Object Group Merging

The purpose of object group merging is to aggregate affinitive
objects into one object group if they have different APCCs. The
pool segments of merged object groups are shown in Figure 7. The
y-axis shows the percentage of these pool segments from all the
pool segments. Four benchmarks are affected by the object group
merging. Figure 8 shows the runtime of our approach (normalized
to the runtime without pool allocation) with and without object
group merging.

Two out of the four benchmarks (197.parser and 300.twolf)
have a modest 3% and 6% improvement in their runtime. 175.vpr
and 447.dealll have no obvious improvement because their merged
object groups are used for looking up hash tables and searching
in large red-black trees. The frequent access behavior is to visit
some selective objects, but not traversing the entire data structures.
The average runtime with object group merging has a modest 1%
improvement.

5.3 Number of Objects in Object Groups

As discussed in Section 3.3.1, we set a threshold to filter out small
object groups that cannot make full use of the pool segments. Fig-
ure 9 shows the impact of such filtering. The baseline is the run-
time without pool allocation. When a larger threshold is selected,
fewer object groups are allowed to have their pool segments. It
can make the objects in the pools denser, but may lose some po-

1.2

2.0+

O1-PCC ®2-PCC E3-PCC B4-PCC @BFCC WAPCC

1.0

0.9
0.8
0.7

Normalized runtime

0.6

RN
RN
I
e

C.
%

0.7 4

¥
0.6 ‘

Normalized runtime

Runtime ratio

Figure 9. Normalized runtime for different object number thresh-
old

1.1
. 032 m64 @128 W256
E 10 | I 1 — A
&
= 0.9 A -
=
g 1
= 08 - |
£
2 0.7 A B
o LA LR LA [LA O (A OO L
oy S $ S
i & of & S & & &
PO A SN G S R R P
Nzt LE SR CN - AR SE DC
N & N ._\..‘b Dy bb &bq, Y
v &g:

Figure 11. The runtime ratio of DPA and the call-site based ap-
proach

W DPA on #1 Ocall-site based on #1 BDPA on #2 & call-site based on #2

80%

60%

20% - m II
0% -

Speedup

§ & & & Q>
WS TS oF F TSSO
a8 &N < R CHIE SIS < Q N
St S R AN SR A
YV big)

Figure 10. Normalized runtime for different maximum object size

tential improvement. The loss is especially obvious for 300.twolf
and 179.art, because their critical object groups have only several
thousand objects. In our evaluated benchmarks, a threshold of 100
makes a good trade-off and shows the best performance for almost
all the benchmarks.

5.4 Object Size

A large object cannot benefit much from improved pool allocation,
but may waste some space in a pool segment due to internal frag-
mentation. We set an object size threshold that prevents the pool
allocation for large objects. As a contrast, a small threshold is too
conservative and may exclude critical object groups. The impact
of different thresholds is shown in Figure 10. The baseline is the
runtime without pool allocation. We can see that the threshold of
32 or 64 bytes works poorly for 300.twolf, 179.art, 473.astar and

98

Figure 12. The speedup of DPA and the call-site based approach

483.xalancbmk. The threshold of 128 bytes is adequate and a larger
one does not help further.

5.5 Overall Performance

Now, we have explored the design space of our DPA allocator. The
overall performance on the two platforms is shown in Figure 11 and
Figure 12, compared with the call-site based strategy (i.e., 1-PCC
without object group merging). The baseline is the runtime without
pool allocation. Our approach can accelerate the benchmarks by an
average of 12.1% and 10.8% on the two platforms. 483.xalancbmk
shows significant speedup, 28.6% on #1 and 82.2% on #2. The
reason is that several object groups in it have 188,718 small objects
each, which need only 3Mb-6Mb space when using DPA allocator,
but the objects are scattered in a 200M memory space when using
the system allocator. For 197.parser, our approach is 1% faster than

Name Base DPA | Ratio

175.vpr 1370M 1365M | 100%

197 .parser 765M 437M 57%

253.perlbmk 139M 142M | 102%

300.twolf 2304M 1863M 81%

197.art 14837M | 13677TM 92%

183.equake 996M 472M 47%

188.ammp 2847M 2830M 99%

473.astar 8480M 6660M 79%

483.xalancbmk 4992M 2846M 57%

447 dealll 5137M 4718M 92%

453.povray &M 14M | 169%

482.sphinx3 12623M | 12840M | 102%

Table 3. Cache misses on #1
L2D misses TLB misses

Name Base DPA | Ratio Base DPA | Ratio
175.vpr 145M 147M | 101% 1009M 998M 99%
197.parser 11M 5M 43% 1376M | 1017M 74%
253.perlbmk 15M 16M | 106% 162M 164M | 101%
300.twolf 11K 9K 86% 815M 759M 93%
197.art 77K 15K 20% 508M 245M 48%
183.equake 188M 116M 62% 50M 39M 78%
188.ammp 56M 52M 94% 849M 846M | 100%
473.astar 2584M 996M 39% 8994M | 5895M 66%
483.xalancbmk 1671IM 549M 33% 16920M | 1472M 9%
447 dealll 770M 734M 95% 1253M | 1275M | 102%
453.povray 82K 56K 68% 1041M | 1049M | 101%
482.sphinx3 1673M | 1658M 99% 2020M | 2022M | 100%

Table 4. Cache and TLB misses on #2

its custom allocators. Some benchmarks have a slight slow down
because their benefit is less than the run-time overhead incurred.

Compared to the call-site based strategy, our approach outper-
forms on three benchmarks on #1 (6.6% for 197.parser, 16.1% for
300.twolf, and 16.1% for 483.xalancbmk). 100% of the memory
allocation request in 300.twolf and 6.5% in 483.xalancbmk have
wrappers, and APCC strategy can handle them properly. 197.parser
and 300.twolf can gain benefit from object group merging, as Sec-
tion 5.2 shows. 197.parser and 483.xalancbmk have similar outper-
form on #2. 300.twolf has no improvement on #2 because it has
few cache misses (about 11K) before applying DPA, as we will
show soon.

Table 3 shows the number of cache misses on platform #1 with
and without applying DPA. DPA can reduce the cache misses by
15% on average. 453.povray gets more cache misses with the DPA
allocator, but the total amount is quite small compared to the other
benchmarks. Benchmarks with distinct cache miss reduction all
have obvious speedup. We believe that the TLB misses are also
reduced, but we cannot get the data because of the lack of hardware
support.

Fortunately, platform #2 has more detailed performance mon-
itors, and Table 4 shows the cache and TLB miss number on it.
Due to the larger cache, the benchmarks have less cache miss
number than that on #1. DPA reduces the cache misses by 37%,
and TLB misses by 30% on average. The great miss reduction of
483.xalancbmk (67% and 91% respectively) leads to its significant
speedup. 300.twolf and 179.art have no improvement on this ma-
chine because they have few cache misses before applying DPA.

Figure 13 shows the run-time overhead (compared to the base
runtime) of our system. We evaluated the overhead by forwarding
all allocation requests to the default system allocator when the ob-
jects are about to be allocated from pools. In this case the memory

99

5%

4%

3%

2%

Run-time overhead

1%

0% T ‘l

$ & S @ Q& S 8D o
K * R A S P A SR
TGO F T EE ST
\q < N\) \ogy \Cb N 4‘3} DP‘ bb"-;' qQ/

o
¥

Figure 13. Run-time overhead of DPA

B DPA Oworking space reduction ®layout improvement & faster allocation

100%

=
Z H
< 90%
=
£
= 80%
@
£
€ 70%
=
&~
60%
& & &
> & & & N4
D"GA \,\o, & z\"‘;'b &
N B NS
> & > n;;b
S
>

Figure 14. Breakdown of benefit

layout is similar to the base. The overhead includes all in our system
except the pool allocator (in fact, our pool allocator has a shorter
execution time than the system allocator). The graph shows that our
DPA allocator has negligible overhead (0.7% on average) for most
benchmarks.

Figure 14 illustrates the breakdown of the benefit gained in our
system for the benchmarks that have obvious speedup. We separate
the total benefit into three parts: the faster allocation/deallocation,
the rearrangement of memory layout, and the reduction of working
space. To measure the benefit of the first two parts, we use modi-
fied pool segments which always allocate objects with their object
headers. We can get the impact from only the two parts by compar-
ing this runtime with the base runtime. The incremental impact of
working space reduction is the difference between this runtime and
that of standard DPA. It is difficult to measure the benefit of faster
allocation/deallocation alone, so we estimate it by small test cases.
The test cases have the same number of allocation/deallocation in
pools as the benchmarks, but have no data accesses to the allocated
objects. This part of benefit is obvious for 197.parser because it
has quite a lot of allocations. Most benchmarks (197.parser 179.art
473.astar, and 483.xalancbmk) benefit more from the improvement
of layout than the working space reduction, but some benchmarks
show the opposite is true (183.equake).

6. Conclusions

Accessing heap objects occupies a large portion of the workloads
in many programs. It is critical to improve the locality of data
in heap. An important issue is to control the heap data layout on
executable binary transparently for a better performance. Existing
techniques either need source code, or prior execution to collect
profiling information.

In this paper, we studied the two important issues in dynamic
pool allocation: widely used wrappers can group unrelated objects
together, while different call sites can separate related objects into
different pools. We have also studied the affinity of objects and its
key attribute in the storage shape graph (SSG).

We also proposed an approach to control the layout of heap data
dynamically. It eliminates the effect of wrappers using an adaptive
partial call chain (APCC) strategy, and merges object groups using
their key attributes in SSG. In order to reduce the waste of pool
space, it uses a set of proper thresholds to filter out object groups
that have a small object number or have a large object size. It also
compresses the objects which have fixed size in the pool segment.

We also did a lightweight implementation of our approach, and
optimized it to get the APCC and object group ID of an object with
little overhead. Our approach gets a speedup of 12.1% and 10.8%
on average on two commodity machines, and up to 82.2% for some
benchmarks.

Acknowledgments

This paper is supported in part by the National Natural Science
Foundation of China (NSFC) under the grant 60736012, the In-
novation Research Group of NSFC (60921002), the National Ba-
sic Research Program of China (2005CB321602), the National
High Technology Research and Development Program of China
(2007AA01Z110), the National Science and Technology Major
Project of China (2009Z2X01036-001-002), and by the U.S. Na-
tional Science Foundation under the grant CNS-0834599 and a gift
grant from Intel.

References

[1] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, University of Copenhagen,
1994.

[2] D. A. Barrett and B. G. Zorn. Using lifetime predictors to improve
memory allocation performance. In Conference on Programming
Language Design and Implementation, pages 187-196, 1993.

[3] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data
placement. In Architectural Support for Programming Languages and
Operating Systems, pages 139—149, 1998.

[4] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. In Conference on Programming Language Design and
Implementation, pages 296-310, 1990.

100

[5] C.J. Cheney. A nonrecursive list compacting algorithm. Communica-
tions of the ACM, 13(11):677-678, 1970.

[6] T. M. Chilimbi and J. R. Larus. Using generational garbage collection
to implement cache-conscious data placement. In International
Symposium on Memory Management, pages 37-48, 1998.

[7] T. M. Chilimbi and R. Shaham. Cache-conscious coallocation of hot
data streams. In Conference on Programming Language Design and
Implementation, pages 252-262, 2006.

[8] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious
structure definition. In Conference on Programming Language Design
and Implementation, pages 13-24, 1999.

[9] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In Conference on Programming Language Design
and Implementation, pages 1-12, 1999.

[10] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage, improving program
locality. In Conference on Object Oriented Programming Systems
Languages and Applications, pages 69-80, 2004.

[11] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout in the heap. In
Conference on Programming Language Design and Implementation,
pages 129-142, 2005.

[12] D. Lea. A memory allocator. The C++ Report, 1989.

[13] J. Lu, A. Das, and W. Hsu. Dynamic helper threaded prefetching
on the sun ultrasparc cmp processor. In International Symposium on
Microarchitecture, 2005.

[14] M. Marron, D. Kapur, and M. Hermenegildo. Identification of
logically related heap regions. In International Symposium on Memory
Management, pages 89-98, 2009.

[15] M. L. Seidl and B. G. Zorn. Segregating heap objects by reference
behavior and lifetime. In Architectural Support for Programming
Languages and Operating Systems, pages 12-23, 1998.

[16] M. J. Serrano and X. Zhuang. Placement optimization using
data context collected during garbage collection. In International
Symposium on Memory Management, pages 69-78, 2009.

[17] B. Steensgaard. Points-to analysis in almost linear time. In Annual
Symposium on Principles of Programming Languages, pages 32—41,
1996.

[18] Q. Zhao, R. Rabbah, and W. Wong. Dynamic memory optimization

using pool allocation and prefetching. ACM SIGARCH Computer
Architecture News, 33(5):27-32, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

