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ABSTRACT

Shared-memory multiprocessors have dominated all plat-
forms from high-end to desktop computers. On such plat-
forms, it is well known that the interconnect between the
processors and the main memory has become a major bot-
tleneck. The bandwidth-aware job scheduling is an effective
and relatively easy-to-implement way to relieve the band-
width contention. Previous policies understood that band-
width saturation hurt the throughput of parallel jobs so they
scheduled the jobs to let the total bandwidth requirement
equal to the system peak bandwidth. However, we found
that intra-quantum fine-grained bandwidth contention still
happened due to a program’s irregular fluctuation in mem-
ory access intensity, which is mostly ignored in previous poli-
cies.

In this paper, we quantify the impact of bandwidth con-
tention on overall performance. We found that concurrent
jobs could achieve a higher memory bandwidth utilization at
the expense of super-linear performance degradation. Based
on such an observation, we proposed a new workload schedul-
ing policy. Its basic idea is that interference due to band-
width contention could be minimized when bandwidth uti-
lization is maintained at the level of average bandwidth re-
quirement of the workload. Our evaluation is based on both
SPEC 2006 and NPB workloads. The evaluation results on
randomly generated workloads show that our policy could
improve the system throughput by 4.1% on average over the
native OS scheduler, and up to 11.7% improvement has been
observed.
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1. INTRODUCTION

Shared-memory multiprocessors, such as recent multi-core
processors, are widely used as a cost-effective way to build
high performance servers. However, it is well known that
the interconnect bandwidth between processors and main
memory has become a major bottleneck that hindered their
scalability [6]. As the trend is to put dozens, or even hun-
dreds of cores on one chip [11], the interconnect bandwidth
is being pushed to its practical limit [14]. Consequently,
the available bandwidth to access memory (called memory
bandwidth for the rest of the paper) will continue to be a
critical issue for such systems.

Numerous approaches have been proposed to reduce the
requirement of a program to access memory, thus mitigating
the memory bandwidth bottleneck, for example, improving
data locality and eliminating useless prefetches [8] in a pro-
gram. However, as long as the working-set size of a job
exceeds the size of the on-chip cache, the effectiveness of
such approaches is quite limited.

Bandwidth-aware job scheduling has been proposed as an
effective strategy to the above approaches when the num-
ber of concurrent jobs exceeds the number of processors on
a multi-core system [12][4][5]. It attempts to predict the
bandwidth requirement of a job, and selects synergistic con-
current jobs to avoid bandwidth saturation while keeping full
utilization of the available bandwidth. A bandwidth-aware
scheduling policy can thus improve the system throughput
without the expensive bandwidth increase. It has been pro-
posed as a stand-alone technique, or has been used in pro-
cessors with hardware multi-threading [15] and clusters [10].

In most bandwidth-aware scheduling schemes, job seg-
ments, i.e., segments of code executed during a scheduling
quantum, are usually used as scheduling units. To the best
of our knowledge, all existing policies try to select and sched-
ule job segments that could maximize their total bandwidth
requirement to as close to the peak memory bandwidth pro-
vided on the system as possible, denoted as PBW (stands
for peak bandwidth) for the rest of the paper. It is based



on the premise that co-scheduled job segments could fully
utilize the available bandwidth on the system, and experi-
ence little performance degradation before the peak system
bandwidth is reached.

However, when we examined the above premise in more
detail, we found it was hardly the case. Concurrent job seg-
ments actually suffer significant slowdown way before their
combined bandwidth requirement reaches the peak band-
width. Further analysis also shows that the memory accesses
are issued rather irregularly during program execution. A
typical scheduler uses the average bandwidth requirement
in a scheduling quantum to guide its scheduling. Hence,
it is only aware of the changes in bandwidth requirement
between scheduling quanta, but is totally unaware of the
potential huge bandwidth fluctuation within a scheduling
quantum. Consequently, severe bandwidth contention could
still happen within a quantum even if their combined aver-
age bandwidth is below the peak bandwidth.

In this paper, we use a job segment extraction and simu-
lation scheme to quantify the effect of the bandwidth con-
tention. We evaluate a large number of random job segment
compositions from the SPEC CPU2006 floating point bench-
marks. It shows that due to the bandwidth contention, con-
current job segments approach the system peak bandwidth
often at the expense of super-linear slowdown. Based on this
observation, we propose a new scheduling policy, which uses
an ideal average bandwidth requirement (IABW) to set the
scheduling bandwidth target, so that the workload’s global
bandwidth utilization is kept steady during execution. It
results in a better overall performance.

We evaluate the effectiveness of our policy using a user-
level scheduler on Linux. The workloads are randomly gen-
erated using both the SPEC 2006 and NPB suite. The eval-
uation results show that, the throughput could be improved
by up to 11.7% over the native OS scheduler, and the av-
erage is 3.4% and 4.9% for the SPEC workloads and NPB
workloads, respectively.

Our contributions are:

e As far as we know, this is the first work that quantifies
the effect of bandwidth contention within each schedul-
ing time quantum on overall performance. We re-
evaluate the performance of concurrent jobs when they
share the limited memory bandwidth. We show that
the rate of performance degradation is super-linear
when the overall bandwidth requirement approaching
the system peak bandwidth.

e A scheduling policy that could mitigate such impact
is proposed. It controls system-wide bandwidth uti-
lization according to an IABW of the workload. We
verify our idea both with a mathematical proof and
with real system experiments using random workloads.
The scheduling scheme is simple yet quite effective in
improving the system throughput.

e We improve runtime bandwidth prediction using sev-
eral techniques that include filtering out bandwidth
utilization when the bandwidth is over-saturated, and
a phased-based bandwidth prediction.

The rest of this paper is organized as follows. In section 2,
we evaluate the impact of memory bandwidth fluctuation on
bandwidth contention. Based on the evaluation and analy-
sis, we introduce our scheduling policy in section 3. Sections
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4 and 5 present the scheduler and its evaluation results, re-
spectively. In section 6, we introduce related work. Finally,
we conclude the paper in section 7.

2. THE IMPACT OF FLUCTUATION IN
MEMORY ACCESSES

2.1 Methodology

Our evaluation and analysis are performed on a typical
shared-memory system with 4 dual-cores Itanium-2 (Mon-
tecito) processors at 1.6GHz [16]. There is no shared cache
among the cores. We also turn off the hardware multi-
threading on processors. It is equipped with 16GB PC2100
memory. The theoretical peak bandwidth of the front-side
bus (FSB) is 6.4GB/s. Each memory access requires a bus
transaction, and each transaction accesses a cache line. The
last-level cache line size is 128 bytes, so the theoretical peak
bus transaction rate (BTR) of FSB is 50 trans./usec. How-
ever, the realistic BTR, as measured by Stream benchmark
[3], is 40 trans./usec.

It runs Linux 2.6.9. We use perfmon2 and its corre-
sponding libpfm library [2] to access the performance coun-
ters. SPEC 2006 floating point benchmarks are used because
there are more memory-intensive. The SPEC benchmarks
are compiled by Intel compiler v10.1, with optimization flag
-fast. We also created some micro-benchmarks for our eval-
uation and analysis, whose details are in the next section.

2.2 Performance of Various Memory Access
Patterns

The first experiment shows an ideal behavior when concur-
rent jobs share the limited memory bandwidth. We produce
a micro-benchmark called Hog, whose kernel loop is shown
in Figure 1(a). It builds two data arrays and continuously
copies data from one to the other. The access stride equals
to the last-level cache line size. Also, the size of each array
is twice as large as the last-level cache. As a result, all copy
operations will generate cache misses and thus memory ac-
cesses. We adjust the number of nop bundles between two
copy operations to create different bandwidth requirements.
In each case, we run two instances of Hogs in parallel, and
evaluate the system-wide BTR and the weighted speedup.

RUNTIME i0ne (1)
RUNTIMFEshared
The results are shown in Figure 1(b). As the memory
bandwidth requirement increases, the system-wide BTR. in-
creases linearly in the beginning. An obvious inflection point
is observed when the system-wide BTR reaches around 38.2
trans. /usec. It then stalls even when the bandwidth require-
ment of Hogs continues to increase because the bus is satu-
rated. The weighted speedup remains the same as before the
bus saturation at 2. Afterwards, it decreases significantly.
This behavior confirms the premise of existing scheduling
policies described above, i.e. parallel jobs nearly don’t in-
terference each other until peak bandwidth is reached.
However, the reason for such an ideal behavior is due to
the stability of memory access intensity. In this case, the
average memory access latency is about 350 cycles. The
number of nops is 1k at most. Hence, the period of a copy
operation and the following nops is no more than 2k CPU
cycles. In another word, Hog’s BTR is held very steady in
any period longer than 2k cycles.

W eightedSpeedup = Z



/* Hog */
int array_a[NJ[CACHE LINE SIZE/sizeof(int)];
int array_b[N][CACHE LINE SIZE/sizeof(int)];
while (1) { //last long enough: at least for 10 secs
Jor j=0;j<N;j++) {
array_alj][0] = array_b[j][0];
Jor (k=0 k<idle; k++)
asm(“nop”);
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Figure 1: Micro-benchmark: Hog.
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Figure 2: BTR sampling of 433.milc at different in-
tervals.

In comparison, the memory access patterns in real appli-
cations could be very bursty and irregular. We take 433.milc
as an example. Figure 2 shows its BTR sampled with dif-
ferent sampling rates. From Figure 2(a), we find that even
at a relative large sampling interval of 100ms, the BTR of
adjacent intervals could vary significantly. As we shorten
the sampling interval, the BTR fluctuates even more vio-
lently in Figure 2(b). In fact, memory accesses are always
irregular and randomly distributed in very small intervals.
If the scheduling quantum is 100 ms (same as the default
time quantum of Linux kernel version 2.6), and we use the
average BTR in that quantum to guide job scheduling as
in exiting bandwidth-aware scheduling schemes, we will be
made to believe that the program has a rather “steady” be-
havior as presented in Figure 2(a) instead of violent ones in
Figures 2(b).

In order to quantify the impact of BTR fluctuations, we
set the BTR sampling interval at 1 ms, and refer to it as a
fine interval. The scheduling quantum remains as 100 ms.
Our first step is to obtain an application’s BTR using a fine
interval while running alone. We then group the sampled
BTRs into segments. Each BTR segment, denoted as «,
corresponds to BTR samples collected during each schedul-
ing quantum. There are 100 samples in each segment if the
sampling interval is 1 ms and the scheduling quantum is
100ms, i.e., o« =< a1, az,...,a100 >. In order to simulate c,
we modify the kernel loop of Hog to produce another micro-
benchmark HogSim. Its kernel is shown in Figure 3(a).

239

/*HogSim*/

int array_a[N][CACHE LINE SIZE/sizeof(int)];

int array b[N][CACHE LINE SIZE/sizeof(int)],

int gs[100], nop[100];

int cur array index = 0;

While (1) { // last long enough

Jor (7=0; j<100; j++) {
Jor (1=0;1<gs[j];I++) {
af(cur_array_index+1)%N][0] =
b[(cur_array_index+1)%N] [0];

Sor(i=0;i<nop[j];i++){ nop};

cur_array_index += gs[j];

/
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Figure 3: Micro benchmark: HogSim.

It divides the data copy operations into 100 groups. Each
corresponds to a fine interval. The number of copy opera-
tions in each group is lms * a;(trans./usec)/2 = 500 * a;
(2 bus trans. per copy operation). In order to achieve the
desired BTR a;, an estimated number of nops are inserted
after each copy operation. We estimated the number of nops
needed to generate a desired BTR in advance, and form a
mapping table. For a given BTR a,, we look up the table,
and find its closest value and the corresponding nop number.
This process is done offline. The results are organized into
two arrays: GS and NOP, and saved in a file. When HogSim
executes, it reads the file and initializes its own copy of GS
and NOP.

Similar to Hog, we measure the performance with two jobs
of HogSim running concurrently. Figure 3(b) shows BTR
variations in the evaluated segment from 433.milc (4k ms
to 4.1k ms). The pattern is repeated nearly one third of
the total execution of 433.milc. We could adjust its average
BTR by shifting the entire curve up or down. Figure 3(c)
shows that the behavior of the two concurrent HogSim jobs
is very different from that of Hogs. The weighted speedup
of two HogSim jobs starts to decrease when their combined
bandwidth requirement reaches about 24 trans./usec, i.e.
about 2/3 of the realistic peak bandwidth. The figure shows
that, even before bus saturates, they cannot achieve a total
BTR that equals to the sum of each individual BTR. As the
bandwidth requirement increases, the bus utilization gradu-
ally approaches the realistic peak bandwidth. However, the
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Figure 4: BTR Fluctuation (x-axis is time line).

bus contentions also increase, and the resulting weighted
speedup suffers.

2.3 Impact of Fluctuation on System-Wide BTR

and Speedup

The shapes of BTR curves vary significantly in the same
time segment of different programs or in different segments
of the same program. Even if a set of segments have the same
average BTR, their BTR fluctuations may still differ in three
aspects: degree of fluctuation, period of fluctuation and reg-
ularity of fluctuation. In this section, we study how these
three factors influence the overall performance respectively.
When we evaluate one of the factors, the others should re-
main unchanged. We design techniques to manipulate these
factors for any given job segment o« =< az,az,...,a100 >,
whose average BTR is denoted as a.

The first aspect is the degree of fluctuation. It character-
izes how much each a; deviates from @. We manipulate the
degree of fluctuation as follow: for each a;, its distance from
@ is scaled by a factor of y. The degree of fluctuation would
increase if y is larger than 1, and decrease otherwise. As an
example, Figure 4(a) illustrates an original segment taken
from 437.leslie3d. The segment with its degree of fluctuation
at 0.5 (y=0.5) is shown in Figure 4(b). The corresponding
results measured on the real system are shown in Figure 5(a)
and Figure 5(d). They show that, as the degree of fluctu-
ation decreases, the weighted speedup and the system-wide
BTR will behave more like those of Hogs. In another word,
the impact of fluctuation becomes less significant.

The second aspect is the period of fluctuations. It is de-
fined as the average length of time interval between two
adjacent BTRs whose values change across a. For exam-
ple, the BTR curve fluctuates across the line of & 17 times
in the segment shown in Figure 4(a), so the fluctuation pe-
riod of this segment is defined as 100ms/17, or about 6ms.
It is an inverse measure on the number of fluctuations oc-
curs within a segment. Given a segment, we can reduce
its fluctuation period by scaling down each element of array
GS in HogSim by a factor of x (x<1 to maintain the same
BTR average). Figure 4(c) shows the behavior of a new seg-
ment compared to Figure 4(a) when its fluctuation period is
halved (i.e. x=0.5). We could see that the original segment
is repeated 2 times because the duration of the BTR changes
is halved. BTR thus fluctuates more frequently within a
time quantum.
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We evaluate the fluctuation period to see whether smaller
fluctuation period has less significant impact on the paral-
lel jobs. We observed that the fluctuation period is closely
related to the third factor in our study - the regularity of
fluctuations. Figure 4(d) shows a more regular segment we
created from Figure 4(a). Its BTR fluctuates regularly be-
tween 34.4 trans./usec and 5.9 trans./usec (corresponding
to the maximal and minimal BTR of the original segment)
with a fixed period of 6ms.

The impact of varying fluctuation degree and fluctuation
period on the weighted speedup and system-wide BTR of the
concurrent jobs is shown in Figures 5(b), 5(e), 5(c), 5(f). Ini-
tially, due to increased fluctuation degree, the performance
of regular segments in the concurrent jobs is worse than
that of the original ones. However, when we decrease their
fluctuation periods, the behavior of the regular segments in
the concurrent jobs will approach those of Hogs, while the
behavior of the original segments after decreasing the fluc-
tuation periods remain nearly unchanged. This is because
the bandwidth contention among the memory accesses in
regular segments will force those segments to re-align them-
selves, and match a low BTR phase against a high BTR
phase because the lengths of their periods are similar. This
re-alignment is unlikely to happen in the original segments
because their BTR fluctuates irregularly, and those high and
low BTR periods of very different lengths are difficult to
match and re-align. Our measured results show this is in-
deed the case. For the original segments, even if we reduce
the fluctuation period by 1/500 to about 12us, the fluctua-
tions still exert significant impact on the performance of the
concurrent jobs.

We have two conclusions from the evaluation result of fluc-
tuation period. Firstly, our evaluated fine interval is 1ms in
HogSim, and the memory accesses within each fine interval
are as steady as Hog. As a result, we ignore the BTR fluctua-
tion whose period is less than 1ms, so our evaluation result is
still conservative, the practical impact of real job segments
should no smaller than our evaluated results. Secondly, a
straightforward solution for mitigating the impact of fluctu-
ation is to decrease the size scheduling quantum. But above
evaluations show the fluctuation period which cause signifi-
cant impact may be very tiny, and it is not acceptable for a
job scheduling framework for overhead issue.

Putting all of the factors together, we evaluate the im-
pact of BTR fluctuation on general job combinations. We
extract all job segments from all SPEC 2006 floating-point
benchmarks, and randomly select 4 of them to run concur-
rently. The gray points in Figure 6 show the performance
of 1k random combinations. Most of the compositions suf-
fer performance (i.e. weighted speedup) degradation before
their combined bandwidth requirements reaches the realis-
tic peak bus bandwidth. The results also show that as the
global bandwidth requirement increases linearly, the perfor-
mance degradation goes super-linearly.

3. ANEW BANDWIDTH-AWARE
SCHEDULING POLICY

3.1 Basic Idea

Before we discuss our new scheduling policy in detail, it is
necessary to briefly introduce the existing bandwidth-aware
scheduling policies. Equation (2) shows a typical fitness cal-
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culation in most existing scheduling policies. It is based on
a job’s memory bandwidth requirements. BWiemain and
CPUremain are the remaining bandwidth and processors on
the system that to be allocated to new jobs, respectively.
The formula quantifies the gap between the bandwidth re-
quirement of the job waiting to be scheduled and the avail-
able bandwidth. The job with a smaller gap has a better fit,
thus receive a higher priority to be scheduled next. After
a job is scheduled, its bandwidth requirement is subtracted
from BWi,emain. This step is repeated until all CPUs are
assigned a job and busy. The objective is to maximize the
total bandwidth utilization toward the peak bandwidth of
the system [4][5][15][10].

FITNESST =

. )
%ﬁz - BW’r}uniredl

The analysis and evaluation in Section 2 show that the
irregular fluctuation in bandwidth requirement is quite com-
mon in real applications. Existing bandwidth-aware schedul-
ing policies will schedule the job the best fit the remaining
bandwidth on each CPU. It very often could cause severe
bandwidth contention, and degrade overall performance, es-
pecially for workloads with low bandwidth requirement. In
contrast, the basic idea of our new policy is to control the

system-wide bandwidth utilization close to a carefully se-
lected target level as much as possible, and balance the
system-wide bandwidth utilization with overall job perfor-
mance. Such a balance is determined by the average band-
width requirement of the workload. The strategy is to set
proper scheduling bandwidth target, i.e., the initial value of
BW'remain~

3.2 Theoretical Background of the New
Scheduling Strategy

We introduce some terminologies. Given a workload, we
assume it executes on an ideal system with infinite memory
bandwidth, i.e., the concurrent jobs would not suffer per-
formance degradation caused by memory contention. The
turnaround time of the workload is 7;. We call T; the ideal
turnaround time of the workload, and it is the lower bound
of its turnaround time. We also define the ideal average
bandwidth (IABW) of the given workload as the ratio be-
tween the total number of memory accesses and its ideal
turnaround time. IABW quantifies the memory bandwidth
demand of a workload. Note that IABW could be higher
than the realistic peak bandwidth available on the system.

When a workload executes on a real system, bandwidth
contention could cause its turnaround time to be larger than
T;. The objective is to minimize such performance degrada-
tion. We view the execution of a workload as a process of
finishing all its memory requests. As we show in Figure 6,
parallel jobs often suffer super-linear slowdown when they
try to achieve a higher bandwidth utilization. We instead
try to schedule jobs whose combined bandwidth requirement
equals to the IABW of the workload even if there may be
still bandwidth available on the system. This is to mini-
mize the impact of bandwidth contention on overall system
performance. We give some theoretical arguments for this
approach as follows.

Assume a workload has two phases in a segment: one
phase has high bandwidth utilization and the other has low
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bandwidth utilization. We first present our arguments based
on such a simplified two-phase segment. It could then be
easily extended to the entire execution time of the workload.

The total amount of memory accesses in the segment is
M, and its ideal turnaround time is T. The execution time
of the two phases is a and b, respectively, and the corre-
sponding bandwidth utilization is B, and B. They satisfy
the following relations:

M=ax Bs+bx By (3)

(4)
The amount of slowdown due to bandwidth contention in
the segment could be described as:

TotalSlowdown = a X f(Ba) 4+ b x f(B)

= ax f(Ba) +bx SR E) — gm,)

T=a+b

()

In the above equation, function f(x) describes the amount
of slowdown (i.e. performance degradation) if the level of
bandwidth utilization is x. We denote the relationship be-
tween B, and the total amount of slowdown as a function g.
To find the inflection point of g, we let g'(Ba) = 0, where

§(Ba) =ax f/(Ba) +bx f(F=0500) ()

M —a X B,
= ax [f'(Ba) - (825
By making ¢'(B.,) = 0, we have B, = B, M/(a +
b). This is the inflection point of the function g. As the
performance slowdown is super-linear increased, we have the
following relationship for function f:

f'(@) < f'(y), for any <y (7)

If B, is less than M/(a + b), By would be greater than
M/(a + b). Hence, ¢g'(B,) would be less than zero. Simi-
larly, g'(Ba) is greater than zero when B, is greater than
M/(a +b). As a result, when B, = B, = M/T, function
g achieves its minimum, that is T % f(M/T). In another
word, if we try to make the memory bandwidth utilization
evenly distributed in those two phases, the total amount of
slowdown will be kept minimal.

This conclusion could still apply if we further divide each
phase into finer phases. On the other hand, if we extend the
segment to the full extent of the entire workload execution,
the same conclusion also applies.

This result gives us a guideline that, instead of always tar-
geting peak bandwidth utilization when we schedule jobs, we
should aim for keeping the total bandwidth requirement at a
steady level that equals to the IABW of the entire workload,
if all possible. It could minimize performance degradation
due to contention.

3.3 Estimation of the Optimal Scheduling
Bandwidth Target

From the above arguments in Section 3.2, we need to de-
termine a proper scheduling bandwidth target so we could
minimize the overall performance degradation. Similar to
what required on batch processing systems [19] and sys-
tems with QoS guarantee [9], our policy requires jobs to
be submitted with its resource requirements specified, such
as number of processors, estimated memory bandwidth, and
estimated execution time assuming all resources are granted.

(6)
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Assume there is a workload consists of N jobs executed on
a system with C processors (N>C). For each job j, its es-
timated execution time is 7}, and its average BTR is Bj.
On our platform, there is no shared cache among the cores.
The total amount of memory accesses of the workload can
be calculated as follow:

N
Total MemoryRequest = Z(Tj x Bj)
j=1

(8)

For systems with an on-chip cache shared by the cores, the
total number of memory accesses may be hard to estimate.
Some widely-investigated techniques, such as cache partition
[13], together with the miss-rate-curve (MRC) estimation
[18], could also give good estimates of the total number of
memory accesses even in a share-cache environment.

We also need to estimate the ideal turnaround time of
the workload. For a set of concurrent jobs with different
execution time, the ideal turnaround time depends on how
jobs are scheduled on processors. In our study, we assume a
round-robin policy is used for our estimation. In following
section we will explain that the bandwidth-aware schedul-
ing policies only partly follow this round-robin order, hence,
the ideal turnaround time here is just a best-effort estimate.
However, our results show that it is a good enough estimate
to guide our bandwidth-aware scheduling.
ZN—C T,

=1

- ©)

In above equation, jobs are ordered according to their T}
in increasing order, and their specified execution time forms
a new sequence Ty, (1 < j < N). To further explain it, con-
sider an example with 8 concurrent jobs running on 4 cores.
Firstly, since jobs are run in a round-robin order and there
are only 4 cores, the time the shortest job takes to finish
is T, * 8/4. After that, only 7 jobs left, and the time the
second shortest job takes to finish is (T3, — Th,) * 7/4. The
calculation is repeated until the number of remaining jobs
is less than the number of processors. After that, the time
the remaining jobs take to finish is Ty — Thn,. Equation (9)
adds those time components to come up with an estimation
of the ideal turnaround time.

The TABW of the workload is calculated as follow:

Total MemoryRequest

T

IdealTurnaroundTime = + TLny

Ideal Average Bandwidth =

1
IdealTurnaroundTime (10)

The estimated TABW cannot be used as the bandwidth
target of our scheduling strategy. It is because the schedul-
ing policy we proposed in Section 3.2 is based on the band-
width requirement when each job runs alone. But at run-
time, we can only get the bandwidth each job obtained when
it competes with other concurrent jobs. The bandwidth each
job obtained is usually smaller (often much smaller) than
that observed when each job runs alone due to fine-grained
bus contention or even bus saturation. In order to main-
tain the same scheduling decisions, a realistic bandwidth
target for our scheduling policy should also be smaller than
the estimated TABW. In our experiment, we tune the per-
formance of some representative workloads by adjusting the
bandwidth target, and quantify the relationship between the
TABW and the selected bandwidth target. The result is fur-
ther applied to other unknown workloads. More details are
in Section 5.2.



4. SCHEDULER IMPLEMENTATION

4.1 Framework

In order to evaluate the effectiveness of our policy, we im-
plemented a user-level process scheduler on Linux. It exe-
cutes as a daemon. When a program is submitted, the sched-
uler forks the process and inserts it to a global run queue. A
PMU sampling context is also created and attached to each
program. The TABW of current workload is also calculated.
The scheduler set a timer for counting the scheduling time
quantum. When the timer expires, it is notified by a Linux
signal. The scheduling routine is accomplished in the signal
handler follow these steps:

Stepl: Block all the running processes by ptrace_attach,
so that these processes will not be scheduled by Linux kernel.

Step2: For each program executed at last quantum, read
and process its PMU data. Predict the bandwidth require-
ment at next quantum for each scheduling candidate.

Step3: Select proper jobs to run. Firstly, the processes
executed at last quantum are moved to the tail of the run
queue, and the job on the head of run queue is always se-
lected. This step avoids starvation of any process. After-
wards, select other processes according to their bandwidth
requirement, as we introduced in Section 3.1. In our policy,
BW emain is initialized to the estimated optimal scheduling
bandwidth target according to the IABW of the workload.

Step4: unblock the selected processes using ptrace_detach.
Reset the timer and let the scheduler itself sleep.

4.2 Bandwidth Requirement Prediction

Most existing scheduling framework use the observed band-
width, or the average of the observed bandwidth of the last
few time quanta, as the predicted bandwidth requirement for
the next quantum [4][5][15]. However, there are two short-
comings with this method.

The first is that the observed bandwidth of a job by PMU
does not always represent the real required bandwidth of the
job. The online measured BTR could be much lower than its
real bandwidth requirement if bus saturation has occurred.
In our scheme, we calculate system-wide BTR using PMU
sampled data. We set a bus saturation threshold Ts which
is slightly smaller than the realistic peak bandwidth. If the
system-wide BTR is smaller than T'g, it would indicate that
the bus was not saturated, and the observed bandwidth can
be used to estimate the requirement in next quantum. Oth-
erwise, the information is discarded. Note that, even before
bus is saturated, bandwidth contention could still exist.

The second shortcoming is that, the bandwidth require-
ment of some applications changes significantly in adjacent
quanta, e.g. 459.GemsFDTD and 481.wrf. Using observed
bandwidth for the following time quantum would yield very
low prediction accuracy. Many previous studies show that
program execution usually has some phase behavior [17][7].
We try to classify the scheduling quanta into phases. We
sample a job’s instruction pointer (IP) at runtime using
PMU, and the sampling interval is much smaller than the
scheduling quantum. We evenly divide the executable bi-
nary code into R code regions, and build an IP vector (IPV)
whose length is also R. When a sampled IP falls into a code
region, the corresponding element of IPV is incremented by
one, then the IPV is normalized. If the Manhattan distance
of two IPVs is smaller than a similarity threshold T, the
corresponding program segments are in the same phase. We
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maintain a bandwidth requirement info for each detected
phase. At last, we use a simple Markov predictor to predict
the phase change and the corresponding bandwidth. We re-
gard each phase as a state, and form a transfer matrix based
on the phase history. In the beginning, if the predictor fails
to predict the next phase due to the lack of necessary history,
a last-value predictor is used.

S. EVALUATION

5.1 Workloads and Evaluation Metrics

We build some workloads using SPEC CPU 2006 floating-
point benchmarks and single-threaded NPB benchmarks [1].
We evaluate the throughput by measuring the workloads’
turnaround time. We take the average of three consecutive
runs as our final result, and calculate their relative stan-
dard deviation (%RSD). We report the average %RSD of all
workloads due to space limitation.

We use train input size for the SPEC benchmarks. The
execution time of the SPEC benchmark varies widely from
13.6 seconds (436.cactusADM) to 116.0 seconds (435.gro-
macs). One of our experiments shows that a simple long-
job-first policy could improve the turnaround time of some
workloads by more than 25% because it could balance their
workload among the processors. To give each benchmark the
same weight, we execute all benchmarks alone for 2 minutes
and record the number of times it executes. For the last
un-finished execution, we record the number of instructions
completed. When a benchmark is selected to add to a work-
load, the exact 2-minute worth of its execution is added to
the workload. Such a scheme has two advantages.

Firstly, different from closed-systems like the one in [15],
the workload composition is fixed. Hence, the measured
throughputs under different policies are comparable. Sec-
ondly, it also allows our studies to focus only on the effects
of the bandwidth-aware policy itself. As real applications
could have varying lengths, we also present the results on
normal workloads, i.e., the workload with only one instance
of each selected benchmark.

The degree of multiprogramming is randomly set between
2 and 4, i.e. there would be 8 to 16 benchmarks in each
workload for our 4-core experiments. The benchmarks are
selected and mixed randomly. The workloads are generated
offline and recorded for re-execution. Table 1 shows the
workload by their IABW in an increasing order. Table 2
shows the scheduler parameters.

5.2 Determining Scheduling Bandwidth
Target

As discussed in Section 3.3, the optimal scheduling band-
width target should be set at a level lower than the IABW.
We use the SPEC training workloads to approximate the re-
lationship between the two metrics. As an example, Figure
7 shows the tuning process for WL#06. When we gradu-
ally decrease the scheduling bandwidth target from TABW,
WL#06 achieved the shortest turnaround time when the
target is set at 28 trans./usec, which is 4.1% better over
the OS scheduler. It also shows that when the workload
achieved the best performance, the distribution of BTR is
concentrated in regions between 20 and 36. The quanta with
BTR below 20 and above 36 are quite small. This result is
consistent with our argument that maintaining uniformly
distributed memory bandwidth utilization can benefit the



Table 1: TABW of Workloads

Index | #11 | #12 | #13 | #05 | #14
SPEC TABW | 23.2 | 25.0 | 27.1 | 28.1 | 29.2
training Index | #09 | #15 | #06 | #03 | #10
Workloads TABW | 31.3 | 31.9 | 33.3 | 38.0 | 43.7
Index | #07 | #04 | #08 | #01 | #02
TABW | 45.2 | 45.3 | 49.4 | 58.1 | 62.9
Index | #06 | #08 | #04 | #02 | #03
SPEC TABW | 28.5 | 31.0 | 32.2 | 35.0 | 42.0
Workloads | Index | #01 | #09 | #10 | #07 | #05
TABW | 42.3 | 42.4 | 48.2 | 48.5 | 53.0
Index | #02 | #03 | #09 | #01 | #08
NPB TABW | 204 | 26.0 | 26.1 | 26.9 | 27.4
Workloads | Index | #05 | #10 | #06 | #04 | #07
TABW | 294 | 33.4 | 34.1 | 34.8 | 44.8
Table 2: Parameter Setup in the Scheduler
Parameters Value
Max processor cores 4
Scheduling quantum 100 ms
PMU sample interval 1 million instructions
IPV similarity threshold T's 0.4
Bus saturation threshold T 35 bus trans./usec

throughput of workloads. We will discuss the performance
of other workloads under different scheduling targets in the
next section.

The square points in Figure 8 show TABW (x-axis) and the
corresponding scheduling targets (left y-axis) for all man-
ually turned workloads. We use a polynomial regression
method to quantify the relationship between the IABW and
the scheduling bandwidth target, which is plotted as the
solid line. The final curve-fitting function for the solid line
is:

Sched. Target = —0.0118 x I ABW?+1.4571 x I ABW —6.2403
(11)

We can see from the solid line that, as IABW increases,
the difference between the IABW and the optimal schedul-
ing bandwidth target also increases. This is because the
difference comes from the bandwidth measured in a multi-
programming environment and the bandwidth profiled when
the benchmark runs alone, i.e. without any bandwidth con-
tention. As TABW increases, bandwidth contention becomes
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Figure 7: Tuning performance for WL#06 by vary-
ing bandwidth target.
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more severe and their gap becomes larger. The solid line
finally approaches the system peak bandwidth, which indi-
cates that for memory-intensive workload, it is more impor-
tant to increase the bandwidth utilization.

In Figure 6, we use HogSim to evaluate random job seg-
ments from all the SPEC 2006 floating point benchmarks
running concurrently. It is a characterization of the relation-
ship between the bandwidth requirement (measured when it
ran alone) and the utilized bandwidth when it ran concur-
rently with other jobs. We embed Figure 6 in Figure 8 using
the gray points (x-axis and the right y-axis) and the dashed
line is the polynomial regression result of those 1k points.
We can see that the solid line and the dashed line are similar
in shape as expected. The solid line is on the right of the
dashed line, because the evaluation result using HogSim is
conservative, as we discussed in Section 2.3.

5.3 Study of Performance Tendency

We first show the evaluation results of all SPEC train-
ing workloads. The three bars in Figure 9(a) show the im-
provement in the turnaround time over the native OS sched-
uler under different scheduling bandwidth targets: (1) set to
peak system bandwidth (to PBW); (2) set to ideal average
bandwidth (TABW); and (3) a manually selected optimal
target (Optimal by Hand). In order to better understand the
performance discrepancy, we record the system-wide BTR
in each quantum for each workload, and compute the stan-
dard deviation. A lower standard deviation means that the
bandwidth utilization is distributed more evenly among all
quanta. The results are shown in Figure 9(b).

Initial observation shows that workload performance is
correlated with the standard deviation of BTR. Under ex-
isting scheduling policies which always set the scheduling
bandwidth target to PBW, some workloads suffer obvious
slowdown, especially for those workloads with low IABW,
such as WL #11, #12 and #13, where the slowdown could
be up to 9.8%. As example, Figure 10 presents the BTR
breakdown of WL#13. It shows that the OS scheduler may
not cause severe bandwidth saturation, but setting schedul-
ing target to peak bandwidth (PBW) could increase the pro-
portion of both high-BTR (40+) and low-BTR (0-10).

The second bar in Figure 9(a) shows the performance
when setting the scheduling bandwidth target to ITABW.
We have discussed in Section 3.3 that IABW is not the best
practical scheduling bandwidth target, but we still include
it because it could achieve a good bandwidth distribution.
From Figure 9(b), we can see the standard deviations of
TABW are usually smaller than PBW. For some workloads
such as WL#14, it already increases the throughput over the
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Figure 9: SPEC training workloads: performance
under different scheduling bandwidth targets.

native OS. While for the workloads with larger IABW, the
performance is still decreased because the difference between
the optimal scheduling bandwidth target and the TABW is
larger.

At last, we show the performance achieved by adjusting
the scheduling bandwidth target manually for each work-
load, as we did in Section 5.2. For all training workloads,
up to 8.8% improvement could be achieved, and the aver-
age improvement is 3.1%. From Figure 9(b) we also see the
BTRs are distributed most evenly.

5.4 Generality of the Policy

In this section, we use Equation 11 which was derived
from the training workloads, and apply it on other workloads
to derive their scheduling bandwidth targets. We want to
see how general Equation 11 is to other workloads on our
platform.

Figure 11 and Figure 12 show the evaluation results of
the SPEC and NPB workloads respectively. Although using
existing scheduling policy of setting the target to PBW, we
could achieve up to 13.0% improvement for NPB WL#03,
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Figure 10: BTR Breakdown of WL#13.
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ment over native OS.

throughput improve-

most workloads would suffer throughput degradation. Com-
pare to the native OS scheduler, scheduling to PBW de-
grades the throughput of SPEC workloads by 1.4% on aver-
age, and it achieves merely 1.1% better on the NPB work-
loads. While using our selected bandwidth target, up to
11.7% improvement could be achieved and the average im-
provement is 3.4% and 4.9% for SPEC and NPB workloads
respectively. Due to the adaptability of the scheduling band-
width target, the most severe slowdown suffered among all
workloads is only 1.8%.

5.5 Effect on Normal Workloads

The above evaluation uses workloads that consist of bench-
marks with the same length to eliminate the impact of the
length of the job execution time. In this section, we present
the results of more normal workloads. The composition of
the benchmarks is the same as before, but only one instance
of each benchmark is in the workload.

We also evaluate the performance under the long-job-first
policy, in which the job with longer execution time has a
higher priority to be scheduled. Under this policy, the pro-
cessor fragmentation could be reduced, and the job-balancing
among the processors could be improved. Figure 13 shows
the evaluation results of the training workloads. Because
the length of SPEC benchmarks varies widely, the average
performance under the long-job-first policy turns out to be
the best. Up to 25% improvement is achieved on WL#01.
On average, the performance improvement is 6.1%. For the
two bandwidth-aware policies, our policy did not degrade
the performance of any workload, and achieved an average
of 3.4% improvement, while setting the bandwidth target
to peak bandwidth will degrade the average performance by
3.8%.
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As shown in Figure 14, for most NPB workloads, long-
job-first policy hurts the throughput. There are two rea-
sons. Firstly, jobs with long execution time happen to have
high BTR in NPB suite. For example, the first three jobs
with the longest execution time happen to have two of the
highest BTR (mg.C and cg.B). Hence, long-job-first policy
would cause bus bandwidth to saturate when both of them
are selected to run concurrently. Secondly, the variance of
job lengths in NPB benchmarks is not as severe as that of
the SPEC benchmark. Hence, long-job-first policy would
not have much performance gain from improving the job-
balancing among the processors. Using either PBW or our
policy could improve the throughput. On average, the im-
provement of our policy is 4.75%, and the improvement of
PBW is 3.56% for NPB workloads.

5.6 Bandwidth Requirement Prediction
Accuracy

We evaluate each single benchmark using different BW
prediction mechanisms, including: (1) our IPV-based phase
detection and prediction scheme described in Section 4.2,
with its similarity threshold set at 0.3 and 0.4; (2) the last-
value prediction scheme; and (3) last-window prediction sch-
eme, with the window size set at 2 and 3 quanta. In a
time quantum, if the difference between the measured BTR
and the predicted BTR is smaller than 5% of the realistic
peak bandwidth, we consider it to be a successfully pre-
dicted quantum. Figure 15 shows the measured results.
Our IPV-phase detection and prediction can improve the
prediction accuracy for those 3 benchmarks (434.zeusmp,
459.GemsFDTD, 481.wrf) with most frequent BTR fluctu-
ation.
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Figure 15: BTR prediction accuracy: percentage of
successfully predicted quanta.

6. RELATED WORK

The bandwidth-aware job scheduling is widely investi-
gated. Antonopoulos et al. proposed a bandwidth-aware job
scheduling policy [4]. It selects the jobs based on the prin-
ciple that total bandwidth requirement of co-scheduled jobs
equals to the maximal capability of bus. Their future work
[5] proposes a flexible and realistic design: they track the
bandwidth consumption through the performance monitor-
ing unit (PMU) to predict the jobs’ bandwidth requirement
in the near future, and the scheduling is based on the predic-
tion. The bandwidth-aware scheduling policy is also applied
as an important component together with other considera-
tion on job schedulers. On the case of hybrid multiproces-
sors with hardware multi-threading support, the bandwidth-
aware policy is applied to select jobs inter-processors [15].
Koukis et al. expanded the policy to SMP clusters [10],
where the scheduler is conscious of both the memory band-
width inside one SMP node and the network bandwidth
among the nodes.

However, to the best of knowledge, all the existing schedul-
ing frameworks try to keep the bus utilization to the peak
bandwidth of the bus, but ignore the impact from the fine-
granularity fluctuation. The most relevant work to ours
is [12], in which showed that the “memory access pattern”
also impact the bus utilization as bandwidth itself. They
discussed an ideal solution that if the processor has large
enough on-chip cache, and it is well scheduled, the mem-
ory accesses of programs can be forced into “burst” mode,
i.e., a program would occupy 100% of the available band-
width once it start to access the main memory, or issues no
request. The ideal situation would simplify the design of
bandwidth-aware policy. However, for real system, the size
of L2 cache is limited. In addition, the working set of a pro-
gram is usually hard to predict due to executive dependency.
As a result, the “burst” mode seems not practical. In com-
parison, we don’t try to alter the memory access behavior of
a program but seek a scheduling solution which minimizes
the impact of such fluctuation in memory access by carefully
control the system-wide bandwidth utilization.

7. CONCLUSIONS

In this paper, we study how concurrent jobs perform when
they share the limited bus bandwidth. We found that the
bandwidth requirements of real applications fluctuate greatly
when measured using very fine time intervals. Such fluctu-
ations could cause bandwidth contention that could distort
the parameters used in a job scheduling framework. We



quantify the impact of bandwidth contention to the perfor-
mance of concurrent jobs, and found that their performance
degradation is super-linear as the bandwidth utilization ap-
proaches the system peak bandwidth. We give a theoretical
argument that when the overall bandwidth requirement of
co-scheduled jobs equals to the ideal average bandwidth of
the workload, the throughput degradation due to bandwidth
contention will be minimal.

We proposed a new bandwidth-aware scheduling policy
which first estimates the ideal average bandwidth of work-
loads, and set proper scheduling bandwidth target accord-
ingly. Our policy does not need any complicate modification
to the traditional scheduler. The evaluation method isolates
the impact of job-balancing among the processors. The mea-
surements show that, our policy could achieve up to 11.7%
throughput improvement over the native OS scheduler, and
the average of the improvement is 4.1% for all random work-
loads. Our policy could automatically adapt to the change
of the memory bandwidth utilized by the workload, so it
performs well for workloads with various bandwidth require-
ments. In our future work, we plan to extend our scheduling
policy to shared-cache CMP architectures. We also plan to
apply our bandwidth analysis to manage the quality of ser-
vice (QoS) through job scheduling.
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