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ABSTRACT 
Competition for shared memory resources on multiprocessors is 
the most dominant cause for slowing down applications and 
makes their performance varies unpredictably. It exacerbates the 
need for Quality of Service (QoS) on such systems. In this paper, 
we propose a fair-progress process scheduling (FPS) policy to 
improve system fairness. Its strategy is to force the equally-
weighted applications to have the same amount of slowdown 
when they run concurrently. The basic approach is to monitor the 
progress of all applications at runtime. When we find an applica-
tion suffered more slowdown and accumulated less effective work 
than others, we allocate more CPU time to give it a better parity. 
Our policy also allows different weights to different threads, and 
provides an effective and robust tuner that allows the OS to freely 
make tradeoffs between system fairness and higher throughput.  

Evaluation results show that FPS can significantly improve sys-
tem fairness by an average of 53.5% and 65.0% on a 4-core pro-
cessor with a private cache and a 4-core processor with a shared 
cache, respectively. The penalty is about 1.1% and 1.6% of the 
system throughput. For memory-intensive workloads, FPS also 
improves system fairness by an average of 45.2% and 21.1% on 
4-core and 8-core system respectively at the expense of a 
throughput loss of about 2%.1 

Categories and Subject Descriptors 
D.4.1 [Operating Systems]: Process Management – scheduling  

General Terms 
Management, Design, Performance 

Keywords 
Process Scheduling, Performance Fairness, Memory Bandwidth 

1. INTRODUCTION 
Shared-memory multi-core processors are the most prevalent 
platforms used today. When applications run concurrently on such 
systems, the competition for the shared memory resources such as 
on-chip caches and DRAM subsystems could degrade their per-
formance unpredictably (compared to when they run alone on the 
same system). Figure 1 shows the effect of resource contention on 
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the performance of four equally-weighted and concurrently run-
ning applications, perl, bwaves, milc and libquantum, all from 
SPEC2006. They run on a 4-core CMP with private cache (details 
are in Section 4.1). Compared to the isolated run, the execution 
time of perl increases to 1.10X, while the execution time of 
libquantum increases to 1.62X because libquantum is memory-
intensive and suffers more slowdown due to off-chip main 
memory contention. If we replace the last two co-runners with 
leslie3d and soplex, the relative slowdown of bwaves changes 
from 1.19X to 1.47X. It shows that the performance of an applica-
tion highly depends on its co-runners and can change unpredicta-
bly due to resource contention. It violates the assumption of 
weight-based CPU time allocation policy in the OS, and exacer-
bates the need for quality of service (QoS) on such systems. 

 
Figure 1. Performance variations of concurrent applications 

In order to provide performance fairness to concurrently running 
applications, some prior works tried to guarantee the applications 
their fair share of system resources, such as cache space [8] and/or 
memory bandwidth [10]. Some tried to maintain fair performance 
on demanded resources, such as cache miss rates [3, 20] and 
memory-related stall time [6]. However, there still exist gaps be-
tween the share of demanded resources or the resource-
performance and the real application performance (e.g. IPC). In 
this paper, we assume that, for equally-weighted applications, a 
system is fair if all applications’ experienced slowdowns are the 
same. This assumption is based on application performance rather 
than on resource related metrics. It has also been used in several 
prior works [2, 9, 11]. 

In this paper, we propose a fair-progress scheduling (FPS) policy, 
a process scheduling policy that ensures fairness among applica-
tions running concurrently. The basic mechanism is: at runtime, 
we use the data gathered from the performance monitoring unit 
(PMU) and an analytical model to derive the amount of its for-
ward progress after the execution of a time quantum. If we find 
an application suffered more slowdown (thus accumulated less 
progress) than others within the same time quantum, we would 
allocate more time quanta to the application and allow it to make 
the same forward progress as others. 

To calculate the forward progress of an application, the greatest 
challenge is to estimate its performance if it runs alone on the 
system, while it is actually running simultaneously with others [2, 
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6]. In this paper, we proposed a software-based approach. Firstly, 
we classify all executed time quanta into phases [14-17]. The 
performance in the time quanta of the same phase is very similar. 
In each phase, we estimate its run-alone performance via identify-
ing the low-contention time quanta (Section 4.1), in which its 
performance is close to its run-alone performance. We then incor-
porate the information to other time quanta in the same phase and 
estimate their forward progress. 

For a phase without such low-contention time quanta, we force a 
time quantum to run with the desired low-contention co-runners 
by turning it into a training quantum (Section 4.3). Training im-
proves the accuracy of run-alone performance estimation and the 
system fairness significantly at the expense of some CPU idleness 
and system throughput degradation. To mitigate the problem, we 
proposed techniques that can effectively reduce the training over-
head. In addition, by setting an upper-bound on the training over-
head, FPS provides the OS with an effective and robust tuner to 
tradeoff between system fairness and throughput. It makes FPS 
adaptive to different fairness objectives. 

Our experiments are on a commercial server with Intel multicore 
processors. Evaluations show that compared to the native OS 
scheduler, FPS could reduce 53.5% and 65.2% of system unfair-
ness on a 4-core private-cache system and a 4-core share-cache 
system with a throughput degradation of 1.1% and 1.6%, respec-
tively. For memory-intensive workloads, FPS reduces the system 
unfairness by an average of 45.2% and 21.1% on 4-core and 8-
core systems respectively when capping the training overhead to 
2%. Even without any training, FPS still gets 15% better fairness 
than the default OS scheduler, and the change in throughput is 
quite negligible. 

Our contributions are as follow: 

 We propose a scheduling policy to provide performance 
fairness on commodity systems. The policy can significantly 
improve system fairness at the expense of slightly decreased 
throughput, and it also enforces thread priorities/weights. 

 We propose a practical, phase-based run-time scheme to 
obtain the run-alone performance of an application while it 
actually runs simultaneously with others. It is software-
based and does not need any special hardware support. 

 An effective and robust tuner is provided to let the user 
freely make tradeoffs between system-fairness and higher 
throughput. 

The rest of this paper is organized as follow: Section 2 introduces 
the related work. Section 3 shows the overview of our policy. The 
run-alone-performance estimation scheme is introduced in Section 
4. In Section 5, we briefly discuss the system software support. 
Second 6 and Section 7 introduce the evaluation methodology and 
results, respectively. Finally, we conclude this paper in Section 8. 

2. RELATED WORK 
The techniques to provide performance fairness on multiproces-
sors have been widely studied, and memory resource contention 
was identified as the primary cause for unfairness [2, 3, 6-8, 21]. 
There are mainly three different ways to target fairness [7], i.e., 
using (1) resource usage (RUM), (2) resource performance (RPM) 
and (3) overall performance (OPM) as a metric.  

Techniques using RUM try to allocate the demanded amount of 
resources to applications. R. Iyer et al. [12] designed cache parti-
tion techniques to make sure that high-priority applications get 

more cache space. Kyle J. Nesbit et al. [14] proposed fair queuing 
on the memory controller to ensure that each thread receives its 
allocated fraction of memory bandwidth. However, providing 
different applications with the same amount of resources does not 
necessarily produce fair performance because the demand for 
resources is highly application-dependent. Techniques using RPM 
try to guarantee the applications a certain level of resource per-
formance. O. Mutlu and T. Moscibroda designed a memory access 
scheduling policy to let equally-weighted applications have the 
same increase in memory-related stall time [6]. A. Fedorova et al. 
[3] proposed a thread scheduling policy to let the threads achieve 
execution times if they have the same miss rate on shared cache. 
However, other complementary techniques are still needed to 
bridge the gap between the resource-performance and the final 
application-performance (e.g. IPC). By comparison, FPS targets 
application performance directly using the OPM objectives. 

For using OPM and RPM, the most challenging task is to estimate 
what the situation would be if the application runs alone while it 
actually runs simultaneously with others. For example, in [6], 
authors added special hardware counters and triggers in memory 
controller to estimate what the memory stall time is if the applica-
tion runs alone. Similar hardware support is used in their follow-
up work [2], in which the shared-cache contention is also counted. 
Because of the complicated working mechanism in memory de-
vices and their interactions with the processor pipeline, precise 
analytical modeling of performance is still very difficult. In this 
paper, in order to estimate what the application performance (IPC) 
would be if it runs alone, we proposed a totally different runtime 
approach: we make use of the phase behavior of applications and 
identify its ܥܲܫ௔௟௢௡௘  directly by constructing a low-contention 
environment for it. Our approach is software based and does not 
need any special hardware support. 

In order to provide system fairness, most prior works manage the 
shared resources and change the behavior of applications when 
they share the resources. In this paper, we use a process schedul-
ing approach to deal with the problem. Although contention-
aware thread scheduling policies have been widely studied, most 
of them focus on system throughput [4, 5, 12, 13]. A fairness-
oriented thread scheduling policy has been proposed in [3]. It 
targets shared-cache contention and uses RPM as its objective. By 
comparison, FPS mainly targets main memory contention, which 
has been identified as the most dominated cause for an applica-
tion’s performance degradation [1], and it uses OPM. 

3. POLICY OVERVIEW 
3.1 Specifying the Fairness Target 
Similar to previous works [2, 6, 9, 11], we assume a system is fair 
if equally-weighted applications have the same slowdown when 
they run concurrently on system. As shown in Equations (1) and 
(2), on a system with N applications, the slowdown of application 
i is ௦ܶ௛௔௥௘ௗ

௜ / ௔ܶ௟௢௡௘
௜ , where ௦ܶ௛௔௥௘ௗ

௜  and ௔ܶ௟௢௡௘
௜  are the execution 

time when the application runs concurrently with others and runs 
alone, respectively. In the context of process scheduling, an appli-
cation’s execution time T includes both the time when it executes 
on a CPU and the time when it is swapped out. System unfairness 
is defined as the ratio between the maximal and minimal slow-
down among the N applications. An unfairness of 1 means the 
system is perfectly fair. 

௜݊ݓ݋݀ݓ݋݈ݏ ൌ ௦ܶ௛௔௥௘ௗ
௜

௔ܶ௟௢௡௘
௜ൗ  (1)

ݏݏ݁݊ݎ݂݅ܽ݊ݑ ൌ
,଴݊ݓ݋݀ݓ݋݈ݏሼܺܣܯ … , ேିଵሽ݊ݓ݋݀ݓ݋݈ݏ
…,଴݊ݓ݋݀ݓ݋݈ݏሼܰܫܯ , ேିଵሽ݊ݓ݋݀ݓ݋݈ݏ

 (2)



3.2 Basic Ideas 
FPS tries to guarantee the equally-weighted applications to expe-
rience the same slowdown when they run concurrently. In another 
word, the applications should accomplish the same amount of 
effective work (measured in ௔ܶ௟௢௡௘) within the same time period. 
We define the forward progress to quantitatively measure the 
effective work that an application has done. Assume that when an 
application runs alone for ܥ௨௡௜௧ cycles, it makes a progress of 1. 
When it runs concurrently with others, its progress can be calcu-
lated as: 

ݏݏ݁ݎ݃݋ݎ݌ ൌ ෍
௔௟௢௡௘ܥ
௤

௨௡௜௧ܥ

ொ

௤ୀଵ

ൌ ෍ቆ
௤ܫ

௔௟௢௡௘ܥܲܫ
௤ ൈ

1
௨௡௜௧ܥ

ቇ

ொ

௤ୀଵ

 (3)

For a time quantum q, ܥ௔௟௢௡௘
௤  is the number of CPU cycles if the 

application runs alone. The application’s progress is the accumu-
lation of ܥ௔௟௢௡௘

௤  in each executed time quantum (from 1 to Q) 
normalized to ܥ௨௡௜௧. For example, an application runs simultane-
ously with others for ܥ௨௡௜௧*2 cycles but suffers 4X slowdown, it 
has only made a progress of 0.5, while another application runs 
for ܥ௨௡௜௧ cycles but does not have any slowdown, it has made a 
progress of 1. 

In calculating progress, ܫ௤ is the number of executed instructions 
in quantum q. It can be obtained directly from PMU. The main 
challenge is to estimate ܥܲܫ௔௟௢௡௘

௤ . In Section 4, we will describe 
our proposed method in more detail.  

Algorithm 1: Overview of Policy 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Initialize task-queue: run-queue, wait-queue 
while task remains do 

run all apps in run-queue 
wait for a quantum 
// apps run, and then the scheduler resumes here: 
for each app in run-queue do 

pause execution 
move app to wait-queue 
process with PMU data 
estimate ܥܲܫ௔௟௢௡௘ of this quantum 
൅ൌݏݏ݁ݎ݃݋ݎ݌ ௔௟௢௡௘ܥܲܫ/ܫ ൈ   	௨௡௜௧ܥ/1

end for 
// schedule for fairness: 
for each available CPU core do 

find app with smallest progress in wait-queue 
move app to run-queue 

end for 
end while 

In order to impose equally-weighted applications the same slow-
down, FPS tries to let them achieve the same progress within the 
same given time when they run concurrently. Algorithm 1 shows 
the basic steps of FPS. Each time we need to schedule applica-
tions, we update the progress of each application according to the 
runtime information gathered from PMU and the estimated 
௔௟௢௡௘ܥܲܫ

௤ . We then repeatedly schedule the application with the 
smallest progress on each available CPU core. 

4. ESTIMATING RUN-ALONE  
      PERFORMANCE 
To estimate the run-alone performance in each executed quantum, 
we make use of the phase behavior in applications. Firstly, we 
group executed quanta into phases, and use the attribute that the 
performance of the quanta in the same phase should be similar 
[14-17]. If we know ܥܲܫ௔௟௢௡௘

௤  of at least one quantum q in a phase, 
we can apply the information to other quanta in the same phase. 

How to estimate ܥܲܫ௔௟௢௡௘ of a given phase? An intuitive solution 
is to select some quanta in that phase and let them run alone. But, 
this method would result in large CPU idleness if there are many 
applications and each has many different phases. Fortunately, we 
found that in some situations, even when an application run con-
currently with others, its performance is still the same as (or very 
similar to) that of when it runs alone. In which case, we can get 
the estimated ܥܲܫ௔௟௢௡௘

௤  without running the application alone. 

4.1 Identifying Low-Contention Applications 
        in a Quantum 
Competition for shared memory resource is the primary cause for 
performance variations [2, 3, 6-8, 20, 21]. Even if contention hap-
pens in an unpredictable way, we observed that at least in three 
cases, the execution of an application suffers little or minor inter-
ference. Hence, we could assume that ܥܲܫ௔௟௢௡௘

௤ ൎ ௦௛௔௥௘ௗܥܲܫ
௤  in 

those cases. 

 
Figure 2. Architecture overview of the evaluation system. 

In this section, we use measured results on real systems to better 
explain the phenomenon. Figure 2 shows the evaluation system. 
The system is equipped with two Intel Xeon E5410 quad-core 
processors. Each core has a private L1 data cache, and each 2 
cores share one L2 data cache (LLC) on the chip. The benchmarks 
are from SPEC2006 suite, compiled by Intel Compiler with flag -
O3, and use the reference input set. We generate 10 random 
benchmark mixes. To evaluate the contention on the main 
memory, we run benchmarks on cores 0, 1, 4 and 5 to isolate the 
impact of the shared cache. We also evaluate the situation in 
which both cache and main memory are shared by executing them 
on cores 0, 1, 2 and 3. We use Bus Transaction Rate (BTR) to 
characterize the memory-bandwidth requirement of the execution. 
BTR is defined as the number of full-cache-line bus transactions 
per microsecond. The realistic peak BTR of the memory bus is 
120 trans./usec, and that of the FSB is 80 trans./usec. The OS is 
Linux, kernel version v2.6.29. 

In this paper, we call the execution part of an application during a 
scheduling time quantum an application segment, or segment for 
short. In each segment, its ܥܲܫ௦௛௔௥௘ௗ

௤  can be obtained via PMU. 
We also get its real ܥܲܫ௔௟௢௡௘

௤  by querying an offline performance 
profiling file, which is generated by executing the application 
alone on the same system. At last we can calculate its speedup as 
௦௛௔௥௘ௗܥܲܫ

௤ ௔௟௢௡௘ܥܲܫ
௤ൗ . Note the method of obtaining ܥܲܫ௔௟௢௡௘

௤  by 
profiling is only for our evaluation and analysis purpose. It is not 
a part of our scheduling policy.   

Memory Bandwidth Contention: We associate the speedup of 
each segment s with two memory-bandwidth related metrics: 
௦ܴܶܤ݂݈݁ܵ , i.e., the BTR of s when running with others, and 
 ௦, i.e., the total BTR of s and all of its co-runnersܴܶܤܹ݁݀݅ݏݕܵ
within the quantum. To show the correlation among the metrics, 
Figures 3(a) and 3(b) plot the evaluation results of the same ran-
domly selected and representative 1k segments in private-cache 
mode. Figure 3(c) shows a subset of them. The three low-
contention cases are as follows: 

 The bandwidth requirement of a segment is extremely low 
(Criterion 1). In this case, its performance degradation due 



to bandwidth contention is always small, no matter what ap-
plications it runs with. Evaluation results shown in Figure 
3(a) confirm that memory-intensive segments generally suf-
fer more slowdown than less intensive ones [1]. In this pa-
per, we set a threshold ܴܶܤௌ௘௟௙௅௢௪ to 4% of the peak BTR. 
If BTR of a segment is smaller than the threshold, we as-
sume its ܥܲܫ௦௛௔௥௘ௗ

௤  is similar to ܥܲܫ௔௟௢௡௘
௤ . 

 The system wide bandwidth utilization is low (Criterion 2). 
In [4], authors found that even when the average bandwidth 
requirement of concurrent segments is lower than the realis-
tic peak bandwidth of bus, contentions still happen because 
of the fluctuation in memory intensity within the segments. 
Only when the system bandwidth utilization is much lower 
than peak, the remaining available bandwidth could tolerate 
the fine-grained contention and that results in a relatively 
smaller slowdown. In this paper, we set a system-wide BTR 
threshold ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪ to be one third of the peak BTR. If 
the system-wide BTR is smaller than ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪ , we 
can assume ܥܲܫ௦௛௔௥௘ௗ

௤  is similar to ܥܲܫ௔௟௢௡௘
௤   for all the con-

current segments. 

 The system wide BTR is larger than ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪  but 
only one of the concurrent segments is memory-intensive, 
i.e., whose BTR is larger than ܴܶܤௌ௘௟௙௅௢௪ (Criterion 3). Se-
vere contention only happens when there are at least two 
memory intensive segments that are fighting against each 
other. Figure 3(c) shows a subset of evaluated segments that 
belong to this case. Compare it with Figure 3(a), we found 
using this criterion could successfully pick up those quanta 
that have inherently high memory requirement but suffer 
relatively small slowdown. 

Cache and Bandwidth Contention: Similarly, Figures 3(d,e,f) 
show the execution results in shared-cache mode. Compared to 
the results in private-cache mode, we have the following observa-
tions. First, the performance degradation of the application seg-

ments could become more severe because of the added shared 
cache contention. Second, the tendency of performance variations 
is quite similar to that of the private-cache mode. Previous work 
also shows that contention for shared cache is not the dominant 
cause for performance degradation, but the contention in many 
components of the main-memory is [1]. Although the segments 
selected according to the abovementioned three criteria would 
have a bigger performance degradation compared to that in the 
private-cache mode, their performance degradation is still rela-
tively small. As will be shown later, the information gathered 
from such co-scheduled applications will help to estimate the 
௔௟௢௡௘ܥܲܫ

௤  in each executed quantum. 

4.2 Phase Identification and Performance 
        Information Management 
Program phase behavior has been studied extensively. In this pa-
per, we use a runtime basic block vector (BBV)-based [14-17] 
phase identification scheme to classify similarly behaved quanta 
into a phase. BBV analysis has been shown to be an effective 
method of identifying phases in programs [14, 15]. 

During the execution of each application segment, we use PMU to 
sample its instruction pointers (IP) and construct a BBV. Each 
element of the BBV maps to a static basic block, and its value is 
increased by 1 when an IP sample falls into it, so the BBV reflects 
the distribution of the sampled IPs in the application’s code space. 
We quantify the similarity of two normalized BBVs by calculat-
ing their Manhattan Distance, as shown in Equation (4), where ݔ௜ 
and ݕ௜ is the element of vector X and Y respectively, and N is the 
number of static basic blocks in application binary. If the Manhat-
tan Distance of two BBVs is smaller than a threshold, the corre-
sponding segments are in the same phase. 

,ሺܺ݁ܿ݊ܽݐݏ݅ܦ݊ܽݐݐ݄ܽ݊ܽܯ ܻሻ ൌ෍ ௜ݔ| െ |௜ݕ
ே

௜ୀଵ
 (4)

Evaluations on PMU sampling overhead and phase identification 
accuracy are in Section 7.2 and 7.7.  

For each application, we maintain a phase table to record the per-
formance information of its phases. The goal is to estimate the 
run-alone-performance of a given phase, denoted as ܥܲܫ௣௛௔௦௘ . 
After the execution of a quantum q, firstly we do phase identifica-
tion and calculate some basic performance metrics such as 
௦௛௔௥௘ௗܴܶܤ

௤ ௦௛௔௥௘ௗܥܲܫ ,
௤  and system-wide BTR according to the 

PMU data. We then check whether the application’s execution 
meets one of the three low-contention criteria. If it meets, its per-
formance data is considered valid, otherwise, it is invalid. In any 
case, we update the performance information in the phase table 
following the method shown in Table 1. Before a phase gets its 
first valid execution, ܥܲܫ௣௛௔௦௘  is the average of all invalid histo-
ries. After the phase gets its first valid execution, the intended 
value of ܥܲܫ௣௛௔௦௘ is the average of all valid histories. The method 
provides the phase with a running estimate, and the three low-

 
(a) Self BTR vs Speed (PC) (d)    Self BTR vs Speed (SC) 

 
(b) SysWide BTR vs Speed (PC) (e)    SysWide BTR vs Speed (SC)

 
(c) The Criterion 3 Subset(PC) (f)    The Criterion 3 Subset(SC)

Figure 3. Speedup over alone run on private cache mode (PC) 
and shared cache mode (SC). X-axes are the percentage of 

measured BTR compared to peak BTR. Y-axes are speedups, 
1 means no slowdown. The solid lines show the curve-fitting of 

the points. The dashed lines illustrate the thresholds. 

Table 1. Per-Phase Performance Info Update Method 

Exec. 
history

௦௛௔௥௘ௗܥܲܫ
௤  of 

current quantum
Updated	ܥܲܫ௣௛௔௦௘ 

None Valid/Invalid ܥܲܫ௣௛௔௦௘ ൌ ௦௛௔௥௘ௗܥܲܫ
௤  

#valid=0
Invalid 

ሺܥܲܫ௣௛௔௦௘ ∗ ݊ ൅ ௦௛௔௥௘ௗܥܲܫ
௤ ሻ/ሺ݊ ൅ 1ሻ

 =௣௛௔௦௘ܥܲܫ

Valid ܥܲܫ௣௛௔௦௘ ൌ ௦௛௔௥௘ௗܥܲܫ
௤  

#valid >=1
Invalid Unchanged 

Valid 
ሺܥܲܫ௣௛௔௦௘ ∗ ݊ ൅ ௦௛௔௥௘ௗܥܲܫ

௤ ሻ/ሺ݊ ൅ 1ሻ 
 =௣௛௔௦௘ܥܲܫ
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contention criteria work as a filter to let only suitable data partici-
pate in the estimation of ܥܲܫ௣௛௔௦௘. 

Finally, the estimated ܥܲܫ௔௟௢௡௘
௤  for this quantum is the larger one 

between ܥܲܫ௣௛௔௦௘ and ܥܲܫ௦௛௔௥௘ௗ
௤ , because we assume the IPC of a 

simultaneously running segment could not be larger than that of 
when it runs alone. 

4.3 Training Quantum 
During execution, a phase of an application may never have a 
quantum that fits any of the three low-contention cases, and it 
degrades the accuracy of the estimation. In that case, we can tem-
porarily change the scheduling policy and inject a training period 
to create necessary low-contention situations for the phase. 

For each application, we use a Markov predictor to predict its 
phase changes based on its full histories. To tolerate incorrect 
prediction, the predictor reports several phases that are most likely 
to appear in next quantum according to their transferring probabil-
ities. If one of the predicted phases has appeared at least twice in 
history and we have not obtained its valid ܥܲܫ௔௟௢௡௘ yet, that ap-
plication will become a training-target-candidate. A training target 
selection policy will be used to determine the final training target 
if there are multiple candidates (Section 4.5), then FPS transfers 
the scheduling policy to training in next quantum 

Algorithm 2 shows the training algorithm. Firstly, the training 
target is selected to run. The policy then selects proper co-runners 
to let the system-wide bandwidth requirement close to but not 
exceeding ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪ (to meet Criterion 2). To do so, it goes 
through all un-selected applications to compute their fitness, and 
the application whose bandwidth requirement is closest to the 
remaining bandwidth per remaining core has the highest priority 
to be scheduled. Similar fitness calculation has been used in pre-
vious works [4, 12, 13] as a throughput-oriented scheduling policy. 
After that, the policy selects other non-memory-intensive applica-
tions, if possible, to meet Criterion 3. Finally, there may be re-
maining CPU cores, but we cannot assign applications to them 

because of the bandwidth constraints. In Section 5, we will dis-
cuss the impact of such CPU idleness on the system throughput. 

Task color: If some applications always be selected as co-runner 
of the training target, it would upset the desired system fairness. 
So we improve the training policy with a task-coloring mecha-
nism. At runtime, we classify the applications into 2 exclusive 
categories (colors). The application with maximal progress cur-
rently and those whose progress would become the maximal if it 
executes in the next quantum (predicted according to the histories 
in phase table) are colored as black. Others are non-black. Sched-
uling a black application may make its progress even larger than 
current maximal progress and degrade system fairness. So the 
improved training policy first finds the best-fit application among 
the non-black ones (Line 07 of Algorithm 2 is changed to “for 
each non-black app p in wait-queue do”). The black applications 
will not be scheduled unless the number of non-black applications 
is smaller than the number of CPU cores. 

Reduction of Training Period: For some phases, such as itera-
tive execution of the body of a loop (so called loop-dominated 
phases), the performance of part of its execution already represent 
that of the entire run. This phenomenon gives us an opportunity to 
further reduce the CPU idleness caused by training. In this paper, 
we set the length of a training quantum to one-quarter of a normal 
quantum. If the trained phase is loop-dominated, the distribution 
of the sampled IPs should remain the same for the rest of the 
quantum, and the partial execution could still get valid ܥܲܫ௔௟௢௡௘. 
If the phase is not loop-dominated, partial execution would result 
in a very different IP sampling distribution, and the executed 
quantum would be recognized as different phases. It will not mis-
lead the ܥܲܫ௔௟௢௡௘ estimation of the targeted phase. 

4.4 Training for Applications with Phase 
        Fluctuation 
Training by phase prediction requires phases to be correctly pre-
dicted. If the accuracy of prediction is low, many training quanta 
will be wasted, and it also misses the training opportunities for 
other phases. Figure 4 shows the phase patterns of two different 
applications that result in different prediction accuracy. Phases of 
bwaves appear in long and stable periods, so the Markov predictor 
would work well on it. In contrast, the phases of leslie3d fluctuate 
greatly. The reason is its executed code region changes frequently, 
and when it runs concurrently with others, contention and partial 
training make the quantum boundary shift unpredictably com-
pared to when it runs alone. As a result, the BBV of each quantum 
looks different, and forms a hard-to-predict phase sequences. 

So we introduce another training trigger for applications with fast 
fluctuating phases. In the beginning, the training is still guided by 
phase prediction. For an application, if we find the prediction 
accuracy of quanta is getting very low, the application is identi-
fied as having fluctuating phases. It is changed to a sequential 
training mode: the application is trained continuously in the next 
N quanta (N=6 in our studies). The motivation is that, if its phases 
fluctuate, a continuous execution of N quanta is very likely to 
cover most of the static phases and obtain their valid ܥܲܫ௔௟௢௡௘ . 
The scheduling algorithm is unchanged, but the length of training 
is forced to a full quantum. 

4.5 Distribution of Training Quanta Among 
        the Applications 
Training could always improve the accuracy of ܥܲܫ௔௟௢௡௘ estima-
tion of applications. But we found that in a particular case, alt-
hough the estimation accuracies are improved for some applica-

Algorithm 2: Scheduling Algorithm - Training 
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// schedule the training target app t 
move app t to run-queue 
௥௘௠௔௜௡ܴܶܤ ൌ ௌ௬௦௪௜ௗ௘ௐ௘௔௞ܴܶܤ െ ௥௘௤௨௜௥௘ௗܴܶܤ

௧   
௥௘௠௔௜௡ܧܴܱܥ ൌ  1-ݏ݁ݎ݋ܿ#
// limit system-wide BTR (to meet criterion 2) 
while ܴܶܤ௥௘௠௔௜௡>0 do 

for each app p in wait-queue do 

௉ܵܵܧܰܶܫܨ ൌ ଵ

ฬ
ಳ೅ೃೝ೐೘ೌ೔೙
಴ೀೃಶೝ೐೘ೌ೔೙

ି஻்ோೝ೐೜ೠ೔ೝ೐೏
ು ฬ

  

end for 
find app with maximal fitness  app f 
௥௘௠௔௜௡െൌܴܶܤ ௥௘௤௨௜௥௘ௗܴܶܤ

௙    
if (ܴܶܤ௥௘௠௔௜௡ ൐ 0) then 

move app f to run-queue 
௥௘௠௔௜௡ܧܴܱܥ െ െ  

end if 
end while 
// meet criterion 3 
if #mem-intensive in run-queue is no larger than 1 then 

for each app p in wait-queue do 
if (ܴܶܤ௥௘௤௨௜௥௘ௗ

௣ ൑ ௥௘௠௔௜௡ܧܴܱܥ && ௦௘௟௙ܴܶܤ ൐ 0)  
move app p to run-queue 
௥௘௠௔௜௡ܧܴܱܥ െ െ  

end for 
end if 



tions, it may lead to system fairness degradation because the train-
ing quanta are not properly distributed among the applications.  

Figure 5 shows such an example. Consider a situation where all 
the applications in a workload are memory intensive, and all of 
them will experience large slowdown due to memory contention. 
The application with maximal and minimal slowdown are B and 
A respectively, as shown in case 1, and the system unfairness is 
determined by the difference of their slowdowns. Case 2 shows 
that when we have sufficient training quanta, the	ܥܲܫ௔௟௢௡௘ estima-
tion accuracies of all applications will improve and approach the 
upper bound of 100%, and the gap between the estimated maxi-
mal and minimal slowdowns becomes smaller and system fairness 
improves. However, if FPS doesn’t have enough training quanta, 
and they are not properly distributed among the applications, e.g., 
applications A used most of the trainings to improve its own 
௔௟௢௡௘ܥܲܫ  estimation accuracy, while that of the others’ remains 
nearly unchanged, as a result, the gap between the estimated max-
imal and minimal slowdowns becomes larger, and system fairness 
degrades (Case 3). What we expect is shown in case 4, where the 
trainings are properly distributed, so ܥܲܫ௔௟௢௡௘ estimation accura-
cies of all applications could improve. Intuitively, the improve-
ment of B is larger because it has larger slowdown, and system 
fairness improves. 

In this paper, we propose a training distribution policy. In FPS, an 
application segment can get its valid estimated ܥܲܫ௔௟௢௡௘

௤  from the 
low-contention executions, or from other segments that belong to 
the same phase. There also exist some segments that have not got 
their valid ܥܲܫ௔௟௢௡௘

௤  estimation. We define the valid data coverage 
of an application to be the ratio between the number of segments 
that have a valid ܥܲܫ௔௟௢௡௘

௤  estimation and the number of all exe-
cuted time quanta. At runtime, FPS updates the coverage metric 
for each application during its execution. When it is going to in-
sert a training quantum, firstly it checks all the applications and 
finds all the training-target-candidates, and finally, it selects the 
one with minimal coverage among them as the training target. 
The purpose is to let the applications keep similar valid data cov-
erage during execution. 

Under this distribution policy, all applications will have chances 
to use a training quantum, and intuitively the one with larger 
slowdown will get more training opportunities because it has rela-
tively smaller valid data coverage. Note that this policy is always 
applied in FPS, no matter what the current workload is, we found 
it especially effective when the workload is memory-intensive and 

the number of training period is limited, because it could avoid the 
unbalanced ܥܲܫ௔௟௢௡௘ estimation accuracy improvement among the 
applications. 

4.6 Shared Cache Considerations 
Unlike bandwidth contention, there is no easily identifiable situa-
tion in which we can assume the cache contention is small and 
only depends on simple performance statistics. There may be 2 
ways to address the shared cache contention. First, train an appli-
cation on an unified cache, but this method would involve huge 
overhead because we need to train at least once for each phase of 
each application, and at least one CPU core have to be idle. Se-
cond, use stack-distance analysis [18-20], but it needs actual 
memory access traces, which is hard to obtain at runtime without 
expensive instrumentations. 

Nevertheless, we still applied some techniques that could mitigate 
as much cache contention as possible without introducing further 
overheads. First, during normal execution in which all CPU cores 
are used, we adapt the Distributed Intensity Online (DIO) thread-
CPU mapping policy [1] to schedule high miss-rate applications 
to different caches, so that the miss rate is evenly distributed 
among the caches. Second, when it is in a training period in which 
at least one CPU core is idle, we will leave the core that shares the 
same LLC with the training target idle. The remaining applica-
tions are assigned to other cores using the DIO policy. Our eval-
uation shows that, the accuracy of the estimate for ܥܲܫ௔௟௢௡௘ on a 
shared-cache system also improves significantly, and system fair-
ness improvement is no less than that on a private cache system. 

5. SYSTEM SOFTWARE SUPPORT 
A Fairness-Throughput Tuner: Training could improve the 
accuracy of ܥܲܫ௔௟௢௡௘ estimation and benefit system fairness, but 
the side effect is CPU idleness and throughput degradation. We 
quantify the overhead caused by training using Equation (5): 

௧௥௔௜௡݄݀ܽ݁ݎ݁ݒܱ ൌ
௥௔௜௡ௐ௔௦௧௘்ܥ

௪௢௥௞௜௡௚ܥ

ൌ
∑ ሺ#ܿݏ݁ݎ݋ െ ௧ሻܽݎܽܲ݊݅ܽݎܶ ൈ ௦௛௔௥௘ௗܥ

௧
௙௢௥ ௘௔௖௛ ௧௥௔௜௡௜௡௚ ௤௨௔௡௧௨௠ ௧

∑ ∑ ௦௛௔௥௘ௗܥ
௤

௙௢௥ ௘௔௖௛	௤௨௔௡௧௨௠	௤௙௢௥ ௘௔௖௛ ௔௣௣

(5)

 ௥௔௜௡ௐ௔௦௧௘ is the number of cycles wasted in training quanta. It்ܥ
is further calculated as the sum of wasted cycles by each idle CPU 
core in each training quantum t. ܶܽݎܽܲ݊݅ܽݎ௧ is the training paral-
lelism, i.e., the number of simultaneously running applications in 
training quantum t, and ܥ௦௛௔௥௘ௗ

௧  is number of cycles it lasts. 
  ௪௢௥௞௜௡௚ is the number of cycles that all CPU cores are executingܥ
a job. It is the sum of the number of executed cycles in each quan-
tum q (denoted as ܥ௦௛௔௥௘ௗ

௤ ) of each application. 

Recall that in FPS, we reduce the number of training quanta and 
increase training parallelism by identifying the low-contention 
executions. FPS also uses shorter training quanta. As a result, the 
overhead of training could be significantly reduced. In addition, 
by measuring the training overhead and setting a limitation, FPS 
provides an effective and robust interface to the OS, and it allows  

(a) 410.bwaves – run with random co-runners 

(b) 437.leslie3d – run with random co-runners 
Figure 4. Applications with different phase behaviors. 

Figure 5. Example of the effect of training distribution 
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tradeoff between system fairness and throughput: the more train-
ing we do, the more accurate the estimated run-alone performance 
becomes, and the more fairness improvement we could get, while 
the expense is more CPU idleness. It makes FPS adapted to dif-
ferent fairness objectives. Relevant evaluation results will be 
shown in Section 7.4 and 7.5. 

Thread Weight: The policy we have described so far assumes 
that all applications are of the same priority. The policy can be 
easily extended to support different thread weights and differenti-
ated performance. We assume a higher weight will result in a 
higher performance. We define ݏݏ݁ݎ݃݋ݎܲ݀݁ݐ݄ܹ݃݅݁	 ൌ
 The policy uses weighted progress instead of .ݐ݄ܹ݃݅݁/ݏݏ݁ݎ݃݋ݎܲ
measured progress, so an application with a higher weight would 
appear to achieve less progress than it really does. As a result, it 
will obtain more time quanta and result in a higher performance. 

Task Submission and Completion: Real applications are differ-
ent in execution time, and they may enter or exit from the system 
at any time. As a result, not all parts of applications keep running 
concurrently, so in this situation, FPS does not try to guarantee a 
fair slowdown of the entire run of each application respectively. 
Instead, we divide the execution into multiple concurrent regions. 
Concurrent regions transfer from one to another when the compo-
sition of concurrent applications changes, i.e., when a new appli-
cation start to run on the system, or an old application terminates. 
The idea of FPS is to guarantee the fairness within each concur-
rent region. When a new application is submitted, its progress 
should be initialized to zero. At the same time, for each old appli-
cation i that is still running on the system, its progress should be 
recalculated as ݏݏ݁ݎ݃݋ݎ݌௜ ൌ ௜ݏݏ݁ݎ݃݋ݎ݌ െ  ௠௜௡, whereݏݏ݁ݎ݃݋ݎ݌
-௠௜௡ is the smallest progress among all the old applicaݏݏ݁ݎ݃݋ݎ݌
tions. The old applications get reduced progress to avoid being 
throttled. When an application exits from the system, the progress 
of other applications remain unchanged. 

6. METHODOLOGY 
Scheduler Implementation: In order to evaluate the effective-
ness of our scheduling policy, we implemented a user-level pro-
cess scheduler on Linux. The scheduler itself executes as a dae-
mon. When a job is submitted, the scheduler forks out the process 
and creates a PMU sampling context for it. The scheduler sets a 
real-time timer to count the scheduling time quanta. When the 
timer expires, the scheduler is notified by a signal and it enters the 
scheduling routine. The main steps have been described in Section 
3.2. The applications are paused by PTRACE_ATTACH, so that 
they will not be scheduled by the Linux kernel. At the end, we let 
the selected applications continue to run using 
PTRACE_DETACH, reset the quantum timer and let the sched-
uler sleep to wait for the next notification. 

System Setup: We use the same system described in Section 4.1. 
Table 2 shows the system setups for our evaluations. When evalu-
ated on a 4-core system, we use different CPU cores to create 
different scenarios of resource contention. When all used cores are 
on the same chip, the shared front-side bus becomes the bottle-
neck because its realistic peak bandwidth (80 trans./usec) is 

smaller than that of the memory bus (120 trans./usec). When the 
cores are on different chips, the potential pressure from the 2 
FSB’s to the memory bus is 160 trans./usec. It is larger than the 
realistic peak bandwidth of the memory bus, so the memory bus 
becomes the bottleneck. Unless stated otherwise, Table 3 shows 
the parameters used in our evaluation. 

Table 3. Parameters setup of scheduler 

Scheduling quantum length 100ms 
PMU sampling period 500k instructions 
BBV similarity threshold 0.7 
Training overhead limitation Unlimited 
Sequential training trigger #failed training>5 &&  

failure ratio>60% 
Workloads: The workloads are constructed using the SPEC CPU 
2006 suite. Firstly, we do length normalization. We run each 
benchmark alone for 10 seconds, and record the number of in-
structions executed. The same part of execution will be added 
when a benchmark is selected to run. Job normalization eliminates 
the variation of the application length. It results in a fair measure 
of system unfairness because almost all parts of benchmarks keep 
running concurrently. It also gives fair measurement of system 
throughput because if the applications are different in length, load 
balancing could influence the results significantly [4]. 

In reality, the execution times of applications are different, as we 
discussed in Section 5, FPS divides the execution into multiple 
concurrent regions, and guarantee the fairness within each region.    
The progress of applications are recalculated when region chang-
es, so the scheduling results of regions are relatively independent 
of each other, and we can focus on the results of some specific 
and representative regions that created by length normalization. 

It is more challenging to evaluate the first 10 seconds than in a 
longer run because the number of quanta in each phase becomes 
relatively smaller, so the workloads’ throughput becomes more 
vulnerable to the CPU idleness due to training. 483.Xalancbmk is 
excluded from the benchmark pool because it has a long initializa-
tion period so its behavior in the first 10 seconds changes mono-
tonically and does not have a repeated phase. Our current imple-
mentation does not handle this situation, but it can be extended in 
the future to detect such an application: it counts the times that 
each phase appears, and if most of the phase does not repeat, we 
would let it run under a regular scheduling policy. 

To evaluate the generality of FPS, we use 10 randomly generated 
multiprogramming workloads, as shown in Table 4. There are 8 to 
16 randomly selected benchmarks in each workload for our 4-core 
experiments. We use the metric Ideal Average Bandwidth Re-
quirement (called IABW for short) defined in [4] to characterize 
the average bandwidth requirement of a workload, and the work-
loads are reordered by their IABW in ascending order. When 
evaluated on the 8-core system, we use the same benchmark com-
bination but each benchmark is spawned twice. We also use other 
manually constructed memory-intensive workloads for evaluation 
purposes. The details are in Section 7.5. 

Table 2. Evaluation System Setups 

Setup name CPU cores used LLC 
Bandwidth 

bottleneck @ 
Per-core LLC 

Size (MB) 
Per-core BTR 
(trans./usec) 

4core-private-cache (PC) 0, 1, 4, 5 Private Memory Bus 6 120/4=30 
4core-shared-cache-diff-chip (SC-1) 0, 1, 2, 3 Shared Memory Bus 3 120/4=30 

4core-shared-cache-same-chip (SC-2) 0, 2, 4, 6 Shared Front Side Bus 3 80/4=20 
8core 0-7 Shared Memory Bus 3 120/8=15 



Metrics: We compare the results of FPS to the native Linux 
scheduler (kernel v2.6). In order to show fairness improvement, 
we measure system unfairness as defined in Section 3.1. We use 2 
metrics to evaluate the impact of FPS to system throughput: work-
load turnaround time, i.e., the time from all applications start at 
the same time to the last application finishes, and extended 
weighted speedup (EWSpeedup). The original weighted speedup 
[11] was commonly used to measure the throughput of multipro-
cessors systems on which the number of concurrent threads does 
not exceed the number of CPU cores. It is calculated as the sum of 
the speedups of all concurrent applications. However, a job 
scheduling policy may pathologically improve this metric by forc-
ing all jobs run serially so that each job suffers no slowdown. So 
we define extended weighted speedup as shown in equation (6). 

݌ݑ݀݁݁݌ܹܵܧ ൌ ෍
௔௟௢௡௘ܥ
௜

௦௛௔௥௘ௗܥ
௜ ൅ ௪௔௦௧௘ௗܥ

௜

ேିଵ

௜ୀ଴

 (6)

The key to the definition is that, when calculating the speedup of 
applications i, if any CPU core is idle before the number of re-
maining applications becomes smaller than the number of availa-
ble cores, the wasted cycles on the idle CPU core are also counted 
as its execution time. In our policy, CPU idles are caused by the 
training quanta, and we attribute the wasted cycles to the training 
target in the corresponding training quantum. 

Prior works use Harmonic Mean of Speedups [13] to give a com-
bined measure for both fairness and throughput. We don’t use this 
metric because it is determined by applications’ individual IPCs, 
while our process scheduling technique is not to give the applica-
tions fair IPC during execution, but to adjust the CPU time distri-
bution to achieve fair execution time. 

7. EVALUATION RESULTS 

7.1 4-core System Results 
Figure 6 shows the average performance of 10 random workloads 
on the 4-core systems. We evaluate 3 different scheduling policies: 
the native OS, FPS and Optimal. The optimal policy uses our 
fairness-oriented scheduling algorithm but IPCୟ୪୭୬ୣ of each quan-
tum comes from offline profiling runs instead of runtime estima-
tion, as described in Section 4.1. 

In the private-cache mode, the unfairness under OS scheduler 
ranges from 1.08 to 1.23, the average is 1.14. FPS improves fair-
ness on all workloads. The average of unfairness is decreased to 
1.06, and about 53.5% of the unfairness is eliminated. On the 
shared-cache-diff-chip mode, the system peak bandwidth is un-
changed but cache contention is added. Cache contention and the 
resulted higher pressure to bandwidth let the system unfairness 

under OS increased to 1.22. About 65.0% of the unfairness is 
eliminated by FPS, and it decreased to 1.08. On the shared-cache-
same-chip mode, bandwidth contention is further increased. The 
unfairness under OS is decreased to 1.29. The unfairness under 
FPS is 1.10. FPS eliminates about 65.8% of the unfairness. Re-
sults show that FPS is effective in eliminating unfairness on both 
private- and shared-cache systems. 

 
(a) Unfairness (lower is better) 

(b) Turnaround Time Speedup 
over OS (higher is better) 

(c) EWSpeedup over OS (higher 
is better)

Figure 6. Average performance on 4-core systems 

For all the evaluated modes, the most severe system throughput 
degradation is about 2% compared to OS, no matter whether it 
was measured in workload turnaround time or EWSpeedup. The 
average decrease is 1.1%, 2.06% and 1.12% respectively for the 
three execution modes. The main sources of the degradation is 
PMU sampling and CPU idleness caused by training.  

In every situation, the optimal policy achieves almost perfect fair-
ness on all workloads and the best throughput. It shows the effec-
tiveness of the fairness-oriented scheduling algorithm.  

 Estimation Accuracy ࢋ࢔࢕࢒ࢇ࡯ࡼࡵ 7.2
To give an insight into why FPS improves system fairness, we 
analyze the accuracy of our ܥܲܫ௔௟௢௡௘  estimation scheme in this 
section. We use the evaluation results on the shared-cache-same-
chip mode because the resource contention is the most severe 
among all 4-core modes. 

Application Level: For a given benchmark, estimation on each of 
its quanta has a cumulative effect on the ܥܲܫ௔௟௢௡௘ estimation ac-
curacy of the entire execution, which is evaluated using Equations 
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Table 4. Random SPEC workloads. The benchmarks in a workload are listed according their run-alone-BTR from high to low. 
The expression appx(n) means there are n parallel instance of appx in the workload. 

WL index IABW Composition 
WL#05 47.1 leslie(2) zeusmp(1) soplex(1) wrf(1) gobmk(1) perl(1) hmmer(2) namd(2) gamess(1) tonto(1) 

WL#02 49.3 
libquantum(1) leslie(1) lbm(1) sphinx3(1) soplex(1) wrf(2) sjeng(2) gobmk(1) gromacs(1) dealII(1) h264ref(1) 
gamess(2) tonto(1) 

WL#01 49.9 milc(1) lbm(1) cactusADM(1) astar(1) omnetpp(1) hmmer(1) dealII(1) namd(1) 
WL#08 60.0 leslie(1) lbm(2) sphinx3(2) soplex(1) mcf(1) gcc(1) omnetpp(1) wrf(1) gobmk(1) perl(2) dealII(1) gamess(1) 
WL#10 65.0 GemsFDTD(1) lbm(1) zeusmp(1) soplex(1) astar(1) calculix(1) gobmk(1) povary(1) 
WL#07 65.4 leslie(1) GemsFDTD(1) milc(1) sjeng(1) calculix(2) dealII(2) povary(1)
WL#09 67.4 libquantum(1) GemsFDTD(2) zeusmp(1) gcc(1) astar(1) bzip2(1) perl(1) hmmer(2) dealII(1) h264ref(1) 
WL#06 76.6 libquantum(1) milc(1) lbm(2) zeusmp(1) mcf(1) cactusADM(1) astar(1) omnetpp(2) calculix(1) h264ref(1) 

WL#04 78.5 
libquantum(1) bwaves(1) GemsFDTD(1) sphinx3(1) zeusmp(1) soplex(2) gcc(1) astar(1) hmmer(1) gromacs(1) 
namd(1) h264ref(1) 

WL#03 90.6 libquantum(1) leslie(1) bwaves(1) milc(2) zeusmp(3) mcf(2) cactusADM(1) wrf(2) sjeng(1) perl(1) hmmer(1) 



(7, 8). If we always use ܥܫ ௦ܲ௛௔௥௘ௗ as ܥܲܫ௔௟௢௡௘ in our policy, all 
applications will appear to make the same progress in all quanta. 
Hence, FPS will allocate the same number of quanta to applica-
tions, which has the same effect as using the native OS scheduler. 
We compare our estimation accuracy to that in this situation. 

௘௦௧௜_௔௟௢௡௘ܥܲܫ ൌ
∑ ௤ொܫ
௤ୀଵ

∑ ൫ܫ௤ ௘௦௧௜_௔௟௢௡௘ܥܲܫ
௤⁄ ൯ொ

௤ୀଵ

 (7)

ܿܿܣ݅ݐݏܧ ൌ
௘௦௧௜_௔௟௢௡௘ܥܲܫ
௔௟௢௡௘ܥܲܫ

ைௌܿܿܣ݅ݐݏܧ (8)  ൌ
௦௛௔௥௘ௗܥܲܫ
௔௟௢௡௘ܥܲܫ

 (9)

Figure 7(a) reports the maximal, minimal and average estimation 
accuracy of the benchmarks in each workload respectively. Figure 
7(b) report the corresponding system unfairness. As the band-
width requirement of workloads increase, the slowdowns of appli-
cations also increase significantly, e.g., libquantum inWL#03 
suffers a slowdown of 1.99X, while that of others may be no more 
than 1.1X. The huge gap between the maximal and minimal slow-
down in a workload illustrates the cause of unfairness. The aver-
age accuracy of our ܥܲܫ௔௟௢௡௘ estimation scheme is about 90% for 
all workloads, and the gap between maximal and minimal is re-
duced. As a result, system fairness is improved when we further 
allocate proper fraction of time quanta according to the estimation. 

Quantum Level: There are two necessary requirements to 
achieve high estimation accuracy in each quantum. First, the 
 ௦௛௔௥௘ௗ of an application in the low-contention co-schedule andܥܲܫ
its ܥܲܫ௔௟௢௡௘  should be as close as possible. We have discussed 
and evaluated it in Section 4.1. Second, performance of quanta in 
the same phase should be as similar as possible. The accuracy of 
phase identification is application-dependent. To evaluate, we run 
each benchmark for 10 seconds under our phase identification 
scheme. For each identified phase, we compute the relative stand-
ard deviation (%RSD) of the ܥܲܫ௔௟௢௡௘ for the quanta within the 
phase. Smaller %RSD means the IPCs of quanta that in the same 
phase are similar, and is better. Finally, we report the applica-
tion’s phase identification accuracy by calculating the 
weighted %RSD of all phases, as shown in Equation (10). 

ܦܴܹܵ ൌ ෍ ௣ݓ ൈ ௣ܦܴܵ
௙௢௥	௘௔௖௛	௣௛௔௦௘	௣

, ௣ݓ	݁ݎ݄݁ݓ ൌ
݊௣

∑ ݊௜௙௢௥	௘௔௖௛	௣௛௔௦௘ ௜
(10)

݊௣ is the number of quanta that belong to phase p. Each phase is 
assigned with a weight ݓ௣. Figure 8 shows the phase accuracy of 
all benchmarks. The average WRSD is 5%, which shows that the 
phase identification scheme could successfully classify the exe-
cuted quanta so that the performance in each phase is quite similar. 

7.3 Effectiveness of Training 
A segment could get its valid ܥܲܫ௔௟௢௡௘ from one of the following 
sources: the three low-contention executions during normal quan-
tum, or training trigged by phase prediction and sequential train-
ing. For each application, we compute the distribution of all valid 
 ௔௟௢௡௘ sources, and report the average of all applications in aܥܲܫ
workload, as shown in Figure 9(a). As the bandwidth requirement 
of the workload increases, the number of low-contention execu-
tion in normal quanta is reduced. On average, the valid data cov-
erage is 90%. About 30% of the quanta get its valid ܥܲܫ௔௟௢௡௘ via 
training. 60% are from spontaneous low-contention executions. 

However, the contribution to the ܥܲܫ௔௟௢௡௘ estimation accuracy is 
different. We evaluate the contribution of each data source in an 
application as follow: the total ܥܲܫ௔௟௢௡௘ estimation improvement 
is ܥܲܫ௘௦௧௜_௔௟௢௡௘ െ ௦௛௔௥௘ௗܥܲܫ . To calculate the contribution of 
source x, we find all quanta that use source x to estimate ܥܲܫ௔௟௢௡௘

௤ , 
and replace their ܥܲܫ௘௦௧௜_௔௟௢௡௘

௤  with ܥܲܫ௦௛௔௥௘ௗ
௤ . The purpose is to 

simulate the situation in which if we did not get a valid ܥܲܫ௔௟௢௡௘ 
for this quantum, and have to use ܥܲܫ௦௛௔௥௘ௗ  instead. We re-
calculate the estimated ܥܲܫ௔௟௢௡௘  of the entire application in this 
case as ܥܲܫ௔௟௢௡௘

௘௦௧௜_௪௜௧௛௢௨௧_௫, and the contribution of x is calculated as 
ூ௉஼೐ೞ೟೔_ೌ೗೚೙೐ିூ௉஼ೌ೗೚೙೐

೐ೞ೟೔_ೢ೔೟೓೚ೠ೟_ೣ

ூ௉஼೐ೞ೟೔_ೌ೗೚೙೐ିூ௉஼ೞ೓ೌೝ೐೏
.  Figure 9(b) shows the contribution 

breakdown. It shows that, for most workloads, training plays an 
important role on improving the accuracy of ܥܲܫ௔௟௢௡௘ . It is be-
cause training deals with those quanta that have inherently high 
memory intensity, so they have a higher potential to suffer a big-
ger slowdown that could cause larger system unfairness. 

The average contribution of sequential training appears small 
because it only deals with applications with fluctuating phases, 
such as leslie3d, milc and zeusmp in SPEC suite. However, it is 
important to improve their coverage and the ܥܲܫ௔௟௢௡௘  estimation 
accuracy. For example, sequential training contributes 28.8% of 
the estimation accuracy improvement for leslie3d in WL#03 and it 
improves the estimation coverage from 88.2% to 93.7% and im-
proves the estimation accuracy from 86.8% to 90.9%, compared 
to the situation when sequential training is turned off. Significant 
estimation improvements are also seen in leslie3d in WL#02, milc 
in WL#04 and GemssFDTD in WL#10, etc. Sequential training 
can also reduce the number of training quanta because phase pre-
diction accuracy is low for those applications. Sequential training 
is triggered in 9 applications in the 10 workloads, and on average, 
it improves the ܥܲܫ௔௟௢௡௘ estimation accuracy by 2.1% and reduce 
the number of training quanta by 11%. 

(a) Application-level ܥܲܫ௔௟௢௡௘ estimation accuracy (1 is best) 

(b) System unfairness 
Figure 7. 4-core shared-cache-same-chip evaluation results 

Figure 8. Phase Identification: Weighted Relative Standard 
Deviation (lower is better) 
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Note phases that never get a valid ܥܲܫ௔௟௢௡௘  also contribute slight-
ly, recall their estimated ܥܲܫ௣௛௔௦௘  is the average of all invalid 
histories (refer to Table 1), so it still improves the estimation ac-
curacy for the quanta whose ܥܲܫ௦௛௔௥௘ௗ

௤  is smaller than ܥܲܫ௣௛௔௦௘. 

Table 5 shows the statistics of training on a 4-core system. Avg. 
Training Parallelism is the average number of co-scheduled ap-
plications in all the training quanta. Memory intensive workloads 
suffer more overhead than less memory-intensive ones because 
there are less spontaneous low-contention quanta in the former, so 
they require more training. WL#03 is the most memory intensive 
one among the random workloads, about 25.9% of its executed 
quanta are training, but we can finally reduce the overhead to 4.5% 
because we reduce the length of a training quantum and increase 
the training parallelism as much as possible. The average of over-
head of all workloads is as low as 1.6%.  

Table 5. Training Overheads 

WL 
#Exec. 

Quantum 
#Train-
Pred. 

#Train-
Seq. 

Avg. Training 
Parallelism 

Overhead

#05 376 21 0 2.8 0.5% 
#02 472 14 6 3.8 0.1% 
#01 246 19 0 2.7 0.8% 
#08 498 32 6 2.6 0.9% 
#10 266 36 6 2.4 2.4% 
#07 274 21 0 3.0 0.6% 
#09 413 68 24 3.0 1.8% 
#06 468 79 0 2.3 2.3%
#04 504 73 12 2.7 2.3% 
#03 715 167 18 2.3 4.5% 
Avg. 423.2 53 7.2 2.8 1.6% 

7.4 8-core system results 
Figure 10 shows the average performance of the 10 workloads on 
8-core system. System unfairness under the native OS increases to 
1.55 compared to the 4-core modes. FPS could eliminate about 15% 
of the unfairness even without any training, because it uses the 
data from spontaneous low-contention execution. The overhead is 
quite negligible. When we gradually relax the training overhead 
limitation, the fairness improves significantly and system 
throughput degrades slightly. When the training overhead is un-

limited, FPS eliminates 70% of system unfairness at the expense 
of 4.5% system throughput degradation. Compared to the results 
on 4-core systems, throughput degradation is slightly larger be-
cause the number of available CPU cores is doubled but the train-
ing parallelism is nearly unchanged. Hence, more CPU idleness is 
incurred due to training. Evaluation shows that our fairness-
throughput tuner is effective and robust. 

7.5 Results on Memory-Intensive Workloads 
Memory intensive workloads would result in more training quanta 
than non-memory-intensive ones. If all applications in a workload 
are memory-intensive, training overhead may become unaccepta-
ble, and the accuracy of ܥܲܫ௔௟௢௡௘ estimation may also be affected. 
In this section, we evaluate the effectiveness of FPS on 5 manual-
ly constructed and representative memory-intensive workloads. 
Firstly we use a workload that only includes the top 5 applications 
with the largest BTR in SPEC suite, i.e., libquantum, leslie3d, 
bwaves, GemsFDTD and milc. There are 2 concurrent instances 
for each application. As a result, the IABW of the workload is as 
high as 196 trans./usec. This workload is denoted as WL-M. And 
then, we pick up another 4 less-memory-intensive benchmarks: 
lbm, mcf, astar and gamess. Their average BTRs vary from 27 
trans./usec to nearly zero. We add one of them to WL-M respec-
tively to form another 4 workloads. We run the 5 workloads on 4 
system setups. The evaluation results are shown in Table 6. By 
comparing the results of the workloads and the results on different 
system setups, we have the following interesting observations. 

 

Figure 10. Effect of different training limitation 

System unfairness under OS: For an extremely memory-
intensive workload where all concurrent applications are memory-
intensive, although all of the applications would experience large 
slowdown, the system unfairness remains relatively small because 
the difference among the applications’ slowdowns is small. For 
example, When WL-M runs under 4-core-private-cache mode, the 
maximal and minimal slowdown is 1.92X (for libquantum) and 
1.65X (for milc) respectively, and the system unfairness under OS 
is only 1.13. Similar results are observed on other 3 system setups, 
in which the unfairness are 1.12, 1.17 and 1.25, respectively. They 
are all below the corresponding average of the random workloads. 
We conclude that severe unfairness is likely to exist when there 
are both memory-intensive and non-memory-intensive applica-
tions. Evaluation results confirmed that when we gradually add a 
less memory-intensive application into WL-M, the less-memory-
intensive application would suffer much smaller slowdown than 
the memory-intensive ones, and the system unfairness become 
larger. In the extreme case when WL-M+gamess runs in 8-core 
mode, the unfairness is as high as 4.08, which is the largest among 
all the workloads that we have evaluated throughout the paper. 

Effect of FPS: When the workloads run under FPS and training is 
not limited, FPS could still effectively eliminate system unfairness 
even for WL-M where the fairness improvement potential is al-
ready small. The average unfairness elimination on the 4 system 
setups are 59.7%, 66.0%, 61.4% and 71.1% respectively. But the  
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training overhead is much larger than those random workloads 
because there are much less spontaneous low-contention execu-
tions. For example, when WL-M executes in SC-2 mode, the av-
erage valid data coverage of all applications is only 2% if training 
is not allowed. If training is not limited, the overheads are be-
tween 10% and 20% for the workloads, and the system throughput 
degradations are between 10% and 15% (as shown in the “T.Time 
Speedup” and “EWSpeedup” columns). However, we can always 
use the proposed fairness-throughput tuner to limit the training 
overhead. It is especially suitable when the unfairness under OS is 
already relatively small but training is potentially very expensive. 
For example, FPS could eliminate system unfairness by an aver-
age of 35.8%, 44.1%, 55.8% and 21.1% respectively for the 4 
system setups when training overhead limitation is set to 2%.  

Effect of training distribution: Table 6 also shows the unfair-
ness achieved by FPS when we turn off the proposed training 
distribution method, which is shown in the “Unfairness-No-
Training-Distribution” column. Instead of keeping similar valid 
data coverage of the applications, the compared method always 
selects the first training candidate that we meet in the run-queue 
as the final training target. Evaluation results show that, when 
training is not limited, there is not much difference no matter 
training distribution is turned on or off, because when there are 
sufficient training quanta to use, the valid data coverage of appli-
cations would all approach their upper bound respectively. While 
the training overhead is limited, different quanta distribution 
methods would have significant influence on system fairness. We 
take WL-M running on SC-2 mode as an example. Under OS, the 
maximal and minimal IPC slowdowns are 3.20X (for libquantum) 
and 2.15X (for milc) respectively. When training distribution is 
off, the unbalanced training resulted in vastly differing valid data 
coverage from 2% (for GemsFDTD) to 93% (for libquantum). As 
a result, their estimated IPC slowdowns becomes 2.39X and 
1.08X respectively, and the unfairness increases from 1.17 to 1.53. 
By comparison, when training distribution is on, the maximal and 

minimal valid data coverage is 77% and 53% respectively, and it 
makes the maximal and minimal estimated IPC slowdowns more 
similar, which is 1.52X and 1.80X respectively, and system un-
fairness decreased to 1.13.  

7.6 Thread Weight Support 
To evaluate the effects of threads with different weights (i.e. pri-
orities), we select 4 different benchmarks whose bandwidth re-
quirements vary greatly from nearly 0% to 46% of the peak, and 
run 2 concurrent instances for each benchmark and evaluate them 
on a 4-core shared-cache-diff-chip mode. Figure 11 shows the 
results. The first set of bars show the performances of benchmarks 
under the native OS with the same weight. It shows the perfor-
mance variation due to resource contention. When assigning dif-
ferent weights of 1, 1, 2 and 4 respectively to the applications, OS 
would allocate proportional number of quanta to application with 
a higher weight (weighted round robin). The results are shown in 
the second set of bars. CactusADM still runs 21% slower than 
gamess even though they have the same weight, and bwaves’s 
performance is still 1.5% smaller than gamess even its number of 
executed time quanta is doubled compared to the latter. The third 
set of bars shows the results of FPS. FPS enforces thread weight 
better because the applications with the same weight have quite 
similar performance, and the performances of other applications 
are proportional to their weights. 

 
Figure 11. Evaluation of thread weight support 
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Table 6. Evaluation results of memory-intensive workloads (positive/negative values are compared to the OS ) 

System 
Setup Workload 

OS 
Unfair-

ness 

FPS-train-unlimited FPS-train-limited-2% 

Unfairness Training 
Overhead 

T.Time
Speedup

EW-
Speedup

Unfairness-
No Training 
Distribution

Unfairness Training 
Overhead 

T.Time 
Speedup 

EW-
Speedup 

Unfairness-
No Training 
Distribution

PC 

WL-M 1.13 1.06 (-52.7%) 17.61% -11.93% -10.64% 1.08 (-43.3%) 1.10 (-25.9%) 1.99% -2.82% -1.79% 1.47 (+246.9%)
WL-M+lbm 1.21 1.14 (-34.5%) 20.77% -14.58%-13.20% 1.16 (-22.2%) 1.16 (-24.7%) 2.10% -2.64% -2.14% 1.44 (+107.0%)
WL-M+mcf 1.28 1.13 (-53.3%) 15.76% -10.94% -9.60% 1.18 (-35.9%) 1.20 (-30.1%) 1.96% -1.98% -1.31% 1.34 (+19.9%)
WL-M+astar 1.44 1.08 (-80.9%) 19.52% -14.18%-11.02% 1.12 (-72.9%) 1.25 (-41.9%) 1.97% -2.85% -1.86% 1.41 (-6.8%)
WL-M+gamess 1.65 1.15 (-76.9%) 15.25% -13.32%-10.53% 1.16 (-75.2%) 1.28 (-56.5%) 2.02% -3.10% -1.83% 1.41 (-37.0%)
Average 1.34 1.11 (-59.7%) 17.78% -12.99%-11.00% 1.14 (-49.9%) 1.20 (-35.8%) 2.01% -2.68% -1.79% 1.41 (+66.0%)

SC-1 

WL-M 1.12 1.11 (-13.3%) 13.6% -9.56% -10.97% 1.11 (-10.3%) 1.10 (-19.1%) 1.98% -1.58% -2.49% 1.60 (+383.9%)
WL-M+lbm 1.32 1.08 (-74.7%) 18.9% -14.44%-15.94% 1.07 (-77.4%) 1.19 (-40.7%) 1.97% -3.91% -3.90% 1.44 (+36.1%)
WL-M+mcf 1.31 1.08 (-74.5%) 14.4% -9.28% -10.76% 1.08 (-72.5%) 1.12 (-60.8%) 2.02% -1.43% -2.50% 1.50 (+61.6%)
WL-M+astar 1.63 1.10 (-83.8%) 17.7% -12.01%-11.10% 1.14 (-78.1%) 1.28 (-56.4%) 2.11% -2.23% -2.08% 1.38 (-39.5%)
WL-M+gamess 1.69 1.11 (-83.8%) 15.3% -12.13%-11.21% 1.12 (-83.0%) 1.39 (-43.3%) 2.00% -2.71% -3.03% 1.44 (-36.0%)
Average 1.41 1.10 (-66.0%) 15.98% -11.48%-12.00% 1.10 (-64.3%) 1.22 (-44.0%) 2.02% -2.37% -2.80% 1.47 (+81.2%)

SC-2 

WL-M 1.17 1.15 (-13.4%) 10.60% -6.02% -6.95% 1.19 (+9.1%) 1.13 (-22.5%) 1.98% -1.90% -2.68% 1.53 (+208.6%)
WL-M+lbm 1.36 1.15 (-57.3%) 9.45% -5.46% -5.17% 1.16 (-54.1%) 1.15 (-56.8%) 1.99% -1.98% -1.56% 1.37 (+4.2%)
WL-M+mcf 1.37 1.17 (-53.7%) 6.92% -4.39% -4.41% 1.18 (-51.6%) 1.10 (-74.3%) 2.00% -1.40% -1.64% 1.55 (+48.2%)
WL-M+astar 1.86 1.06 (-92.5%) 9.11% -5.50% -4.72% 1.18 (-79.0%) 1.22 (-75.1%) 1.97% -2.09% -1.97% 1.32 (-63.5%)
WL-M+gamess 2.46 1.15 (-90.0%) 9.89% -6.30% -5.37% 1.20 (-86.4%) 1.73 (-50.2%) 2.01% -1.93% -2.39% 1.40 (-72.4%)
Average 1.64 1.14 (-61.4%) 9.19% -5.53% -5.32% 1.18 (-67.8%) 1.27 (-55.8%) 1.99% -1.86% -2.05% 1.43 (+25.0%)

8-core 

WL-M 1.25 1.14 (-42.5%) 15.58% -8.75% -10.19% 1.17 (-30.8%) 1.19 (-22.6%) 1.80% -1.84% -0.68% 1.29 (+15.8%)
WL-M+lbm 1.51 1.14 (-73.8%) 13.27% -8.08% -8.41% 1.14 (-73.0%) 1.49 (-4.1%) 1.77% -1.39% -0.51% 1.48 (-7.2%)
WL-M+mcf 1.29 1.12 (-59.4%) 32.5% -15.75%-13.42% 1.17 (-42.1%) 1.24 (-14.9%) 1.93% -2.57% -1.19% 1.23 (-18.1%)
WL-M+astar 2.57 1.13 (-91.6%) 24.2% -11.54%-12.08% 1.12 (-92.1%) 2.15 (-26.8%) 1.87% -0.86% -2.57% 2.17 (-25.7%)
WL-M+gamess 4.08 1.36 (-88.2%) 11.0% -7.32% -7.15% 1.30 (-90.1%) 2.94 (-37.0%) 1.78% -2.25% -2.39% 2.98 (-35.6%)
Average 2.14 1.18 (-71.1%) 19.31% -10.29%-10.25% 1.18 (-65.6%) 1.80 (-21.1%) 1.83% -1.78% -1.47% 1.83 (-14.2%)



7.7 Overhead of the Scheduler 
Compared to the runs under OS, FPS involves overhead mainly 
from the PMU sampling (interrupt handler) and the scheduling 
routine (includes the process of PMU data and scheduling). To 
evaluate the overhead, we run 4 identical applications simultane-
ously on 4 cores. Compared to OS, execution time under FPS 
increases 2.87% in total. The overhead from the scheduling rou-
tine is 1.68%, and the main source of this part is from PMU and 
phase related work (overhead from the scheduling algorithm itself 
is less than 2� .). Our current user-level scheduler is single-
threaded, but PMU data processing for each running application 
can be naturally distributed to the core on which it executed. 
Hence, this part of the overhead can be further reduced and made 
scalable. The remaining 1.19% overhead comes from the PMU 
sampling, which is distributed among applications, so it is also 
scalable when the number of cores increases. 

8. CONCLUSIONS AND FUTURE WORK 
We proposed a fair progress scheduling policy (FPS) to provide 
performance fairness on shared-memory multiprocessors. The 
basic idea is that, given the same amount of CPU time, if an ap-
plication did less effective work than others because it suffers 
bigger slowdown due to resource contention, FPS would allocate 
extra time quanta to it. 

To monitor system unfairness, we define the forward progress to 
quantitatively measure the effective work of an application. The 
challenge when calculating the progress at runtime is to estimate 
the run-alone performance in each executed quantum while the 
application is actually running simultaneously with others. Our 
solution is to classify the execution quanta of application into 
phases, and obtain their estimated ܥܲܫ௔௟௢௡௘  by constructing and 
identifying the low-contention co-scheduled applications. We then 
extend the performance information to other quanta that belong to 
the same phase in order to help estimating their progress. 

FPS does not need any special hardware support. Evaluation re-
sults show that the ܥܲܫ௔௟௢௡௘ estimation accuracy is high and it can 
significantly improve system fairness at the expense of slightly 
decreased throughput. FPS supports different thread weights. It 
also provides an effective tuner to let OS freely tradeoff system 
fairness and higher throughput. Combined with the training distri-
bution policy, it is especially suitable for the memory-intensive 
workloads where the fairness improvement is smaller but the po-
tential training is expensive. 

As a future work, we plan to seek a low-overhead solution to ad-
dress the issue of cache contention and further improve the esti-
mation accuracy. We also plan to design proper metrics and 
methodology to address the I/O contention issues. 
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