
Providing Fairness on Shared-Memory Multiprocessors
via Process Scheduling

Di Xu1,2, Chenggang Wu1*, Pen-Chung Yew3,4, Jianjun Li1, and Zhenjiang Wang1
1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

2Graduate University of Chinese Academy of Sciences, Beijing, China
 3Department of Computer Science and Engineering, University of Minnesota at Twin-Cities, Minnesota, USA

4Institute of Information Science, Academia Sinica, Taiwan
{xudi, wucg, lijianjun, wangzhenjiang}@ict.ac.cn, yew@cs.umn.edu

ABSTRACT
Competition for shared memory resources on multiprocessors is
the most dominant cause for slowing down applications and
makes their performance varies unpredictably. It exacerbates the
need for Quality of Service (QoS) on such systems. In this paper,
we propose a fair-progress process scheduling (FPS) policy to
improve system fairness. Its strategy is to force the equally-
weighted applications to have the same amount of slowdown
when they run concurrently. The basic approach is to monitor the
progress of all applications at runtime. When we find an applica-
tion suffered more slowdown and accumulated less effective work
than others, we allocate more CPU time to give it a better parity.
Our policy also allows different weights to different threads, and
provides an effective and robust tuner that allows the OS to freely
make tradeoffs between system fairness and higher throughput.

Evaluation results show that FPS can significantly improve sys-
tem fairness by an average of 53.5% and 65.0% on a 4-core pro-
cessor with a private cache and a 4-core processor with a shared
cache, respectively. The penalty is about 1.1% and 1.6% of the
system throughput. For memory-intensive workloads, FPS also
improves system fairness by an average of 45.2% and 21.1% on
4-core and 8-core system respectively at the expense of a
throughput loss of about 2%.1

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management – scheduling

General Terms
Management, Design, Performance

Keywords
Process Scheduling, Performance Fairness, Memory Bandwidth

1. INTRODUCTION
Shared-memory multi-core processors are the most prevalent
platforms used today. When applications run concurrently on such
systems, the competition for the shared memory resources such as
on-chip caches and DRAM subsystems could degrade their per-
formance unpredictably (compared to when they run alone on the
same system). Figure 1 shows the effect of resource contention on

*To whom correspondence should be addressed

the performance of four equally-weighted and concurrently run-
ning applications, perl, bwaves, milc and libquantum, all from
SPEC2006. They run on a 4-core CMP with private cache (details
are in Section 4.1). Compared to the isolated run, the execution
time of perl increases to 1.10X, while the execution time of
libquantum increases to 1.62X because libquantum is memory-
intensive and suffers more slowdown due to off-chip main
memory contention. If we replace the last two co-runners with
leslie3d and soplex, the relative slowdown of bwaves changes
from 1.19X to 1.47X. It shows that the performance of an applica-
tion highly depends on its co-runners and can change unpredicta-
bly due to resource contention. It violates the assumption of
weight-based CPU time allocation policy in the OS, and exacer-
bates the need for quality of service (QoS) on such systems.

Figure 1. Performance variations of concurrent applications

In order to provide performance fairness to concurrently running
applications, some prior works tried to guarantee the applications
their fair share of system resources, such as cache space [8] and/or
memory bandwidth [10]. Some tried to maintain fair performance
on demanded resources, such as cache miss rates [3, 20] and
memory-related stall time [6]. However, there still exist gaps be-
tween the share of demanded resources or the resource-
performance and the real application performance (e.g. IPC). In
this paper, we assume that, for equally-weighted applications, a
system is fair if all applications’ experienced slowdowns are the
same. This assumption is based on application performance rather
than on resource related metrics. It has also been used in several
prior works [2, 9, 11].

In this paper, we propose a fair-progress scheduling (FPS) policy,
a process scheduling policy that ensures fairness among applica-
tions running concurrently. The basic mechanism is: at runtime,
we use the data gathered from the performance monitoring unit
(PMU) and an analytical model to derive the amount of its for-
ward progress after the execution of a time quantum. If we find
an application suffered more slowdown (thus accumulated less
progress) than others within the same time quantum, we would
allocate more time quanta to the application and allow it to make
the same forward progress as others.

To calculate the forward progress of an application, the greatest
challenge is to estimate its performance if it runs alone on the
system, while it is actually running simultaneously with others [2,

1

1.2

1.4

1.6

1.8

N
o
rm

a
liz
e
d
 E
xe
c.

Ti
m
e

1

1.2

1.4

1.6

1.8

N
o
rm

a
liz
e
d
 E
xe
c.

Ti
m
e

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMETRICS’12, June 11–15, 2012, London, England, UK.
Copyright 2012 ACM 978-1-4503-1097-0/12/06...$10.00.

6]. In this paper, we proposed a software-based approach. Firstly,
we classify all executed time quanta into phases [14-17]. The
performance in the time quanta of the same phase is very similar.
In each phase, we estimate its run-alone performance via identify-
ing the low-contention time quanta (Section 4.1), in which its
performance is close to its run-alone performance. We then incor-
porate the information to other time quanta in the same phase and
estimate their forward progress.

For a phase without such low-contention time quanta, we force a
time quantum to run with the desired low-contention co-runners
by turning it into a training quantum (Section 4.3). Training im-
proves the accuracy of run-alone performance estimation and the
system fairness significantly at the expense of some CPU idleness
and system throughput degradation. To mitigate the problem, we
proposed techniques that can effectively reduce the training over-
head. In addition, by setting an upper-bound on the training over-
head, FPS provides the OS with an effective and robust tuner to
tradeoff between system fairness and throughput. It makes FPS
adaptive to different fairness objectives.

Our experiments are on a commercial server with Intel multicore
processors. Evaluations show that compared to the native OS
scheduler, FPS could reduce 53.5% and 65.2% of system unfair-
ness on a 4-core private-cache system and a 4-core share-cache
system with a throughput degradation of 1.1% and 1.6%, respec-
tively. For memory-intensive workloads, FPS reduces the system
unfairness by an average of 45.2% and 21.1% on 4-core and 8-
core systems respectively when capping the training overhead to
2%. Even without any training, FPS still gets 15% better fairness
than the default OS scheduler, and the change in throughput is
quite negligible.

Our contributions are as follow:

 We propose a scheduling policy to provide performance
fairness on commodity systems. The policy can significantly
improve system fairness at the expense of slightly decreased
throughput, and it also enforces thread priorities/weights.

 We propose a practical, phase-based run-time scheme to
obtain the run-alone performance of an application while it
actually runs simultaneously with others. It is software-
based and does not need any special hardware support.

 An effective and robust tuner is provided to let the user
freely make tradeoffs between system-fairness and higher
throughput.

The rest of this paper is organized as follow: Section 2 introduces
the related work. Section 3 shows the overview of our policy. The
run-alone-performance estimation scheme is introduced in Section
4. In Section 5, we briefly discuss the system software support.
Second 6 and Section 7 introduce the evaluation methodology and
results, respectively. Finally, we conclude this paper in Section 8.

2. RELATED WORK
The techniques to provide performance fairness on multiproces-
sors have been widely studied, and memory resource contention
was identified as the primary cause for unfairness [2, 3, 6-8, 21].
There are mainly three different ways to target fairness [7], i.e.,
using (1) resource usage (RUM), (2) resource performance (RPM)
and (3) overall performance (OPM) as a metric.

Techniques using RUM try to allocate the demanded amount of
resources to applications. R. Iyer et al. [12] designed cache parti-
tion techniques to make sure that high-priority applications get

more cache space. Kyle J. Nesbit et al. [14] proposed fair queuing
on the memory controller to ensure that each thread receives its
allocated fraction of memory bandwidth. However, providing
different applications with the same amount of resources does not
necessarily produce fair performance because the demand for
resources is highly application-dependent. Techniques using RPM
try to guarantee the applications a certain level of resource per-
formance. O. Mutlu and T. Moscibroda designed a memory access
scheduling policy to let equally-weighted applications have the
same increase in memory-related stall time [6]. A. Fedorova et al.
[3] proposed a thread scheduling policy to let the threads achieve
execution times if they have the same miss rate on shared cache.
However, other complementary techniques are still needed to
bridge the gap between the resource-performance and the final
application-performance (e.g. IPC). By comparison, FPS targets
application performance directly using the OPM objectives.

For using OPM and RPM, the most challenging task is to estimate
what the situation would be if the application runs alone while it
actually runs simultaneously with others. For example, in [6],
authors added special hardware counters and triggers in memory
controller to estimate what the memory stall time is if the applica-
tion runs alone. Similar hardware support is used in their follow-
up work [2], in which the shared-cache contention is also counted.
Because of the complicated working mechanism in memory de-
vices and their interactions with the processor pipeline, precise
analytical modeling of performance is still very difficult. In this
paper, in order to estimate what the application performance (IPC)
would be if it runs alone, we proposed a totally different runtime
approach: we make use of the phase behavior of applications and
identify its ܥܲܫ௔௟௢௡௘ directly by constructing a low-contention
environment for it. Our approach is software based and does not
need any special hardware support.

In order to provide system fairness, most prior works manage the
shared resources and change the behavior of applications when
they share the resources. In this paper, we use a process schedul-
ing approach to deal with the problem. Although contention-
aware thread scheduling policies have been widely studied, most
of them focus on system throughput [4, 5, 12, 13]. A fairness-
oriented thread scheduling policy has been proposed in [3]. It
targets shared-cache contention and uses RPM as its objective. By
comparison, FPS mainly targets main memory contention, which
has been identified as the most dominated cause for an applica-
tion’s performance degradation [1], and it uses OPM.

3. POLICY OVERVIEW
3.1 Specifying the Fairness Target
Similar to previous works [2, 6, 9, 11], we assume a system is fair
if equally-weighted applications have the same slowdown when
they run concurrently on system. As shown in Equations (1) and
(2), on a system with N applications, the slowdown of application
i is ௦ܶ௛௔௥௘ௗ

௜ / ௔ܶ௟௢௡௘
௜ , where ௦ܶ௛௔௥௘ௗ

௜ and ௔ܶ௟௢௡௘
௜ are the execution

time when the application runs concurrently with others and runs
alone, respectively. In the context of process scheduling, an appli-
cation’s execution time T includes both the time when it executes
on a CPU and the time when it is swapped out. System unfairness
is defined as the ratio between the maximal and minimal slow-
down among the N applications. An unfairness of 1 means the
system is perfectly fair.

௜݊ݓ݋݀ݓ݋݈ݏ ൌ ௦ܶ௛௔௥௘ௗ
௜

௔ܶ௟௢௡௘
௜ൗ (1)

ݏݏ݁݊ݎ݂݅ܽ݊ݑ ൌ
,଴݊ݓ݋݀ݓ݋݈ݏሼܺܣܯ … , ேିଵሽ݊ݓ݋݀ݓ݋݈ݏ
…,଴݊ݓ݋݀ݓ݋݈ݏሼܰܫܯ , ேିଵሽ݊ݓ݋݀ݓ݋݈ݏ

 (2)

3.2 Basic Ideas
FPS tries to guarantee the equally-weighted applications to expe-
rience the same slowdown when they run concurrently. In another
word, the applications should accomplish the same amount of
effective work (measured in ௔ܶ௟௢௡௘) within the same time period.
We define the forward progress to quantitatively measure the
effective work that an application has done. Assume that when an
application runs alone for ܥ௨௡௜௧ cycles, it makes a progress of 1.
When it runs concurrently with others, its progress can be calcu-
lated as:

ݏݏ݁ݎ݃݋ݎ݌ ൌ ෍
௔௟௢௡௘ܥ
௤

௨௡௜௧ܥ

ொ

௤ୀଵ

ൌ ෍ቆ
௤ܫ

௔௟௢௡௘ܥܲܫ
௤ ൈ

1
௨௡௜௧ܥ

ቇ

ொ

௤ୀଵ

 (3)

For a time quantum q, ܥ௔௟௢௡௘
௤ is the number of CPU cycles if the

application runs alone. The application’s progress is the accumu-
lation of ܥ௔௟௢௡௘

௤ in each executed time quantum (from 1 to Q)
normalized to ܥ௨௡௜௧. For example, an application runs simultane-
ously with others for ܥ௨௡௜௧*2 cycles but suffers 4X slowdown, it
has only made a progress of 0.5, while another application runs
for ܥ௨௡௜௧ cycles but does not have any slowdown, it has made a
progress of 1.

In calculating progress, ܫ௤ is the number of executed instructions
in quantum q. It can be obtained directly from PMU. The main
challenge is to estimate ܥܲܫ௔௟௢௡௘

௤ . In Section 4, we will describe
our proposed method in more detail.

Algorithm 1: Overview of Policy
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

Initialize task-queue: run-queue, wait-queue
while task remains do

run all apps in run-queue
wait for a quantum
// apps run, and then the scheduler resumes here:
for each app in run-queue do

pause execution
move app to wait-queue
process with PMU data
estimate ܥܲܫ௔௟௢௡௘ of this quantum
൅ൌݏݏ݁ݎ݃݋ݎ݌ ௔௟௢௡௘ܥܲܫ/ܫ ൈ 	௨௡௜௧ܥ/1

end for
// schedule for fairness:
for each available CPU core do

find app with smallest progress in wait-queue
move app to run-queue

end for
end while

In order to impose equally-weighted applications the same slow-
down, FPS tries to let them achieve the same progress within the
same given time when they run concurrently. Algorithm 1 shows
the basic steps of FPS. Each time we need to schedule applica-
tions, we update the progress of each application according to the
runtime information gathered from PMU and the estimated
௔௟௢௡௘ܥܲܫ

௤ . We then repeatedly schedule the application with the
smallest progress on each available CPU core.

4. ESTIMATING RUN-ALONE
 PERFORMANCE
To estimate the run-alone performance in each executed quantum,
we make use of the phase behavior in applications. Firstly, we
group executed quanta into phases, and use the attribute that the
performance of the quanta in the same phase should be similar
[14-17]. If we know ܥܲܫ௔௟௢௡௘

௤ of at least one quantum q in a phase,
we can apply the information to other quanta in the same phase.

How to estimate ܥܲܫ௔௟௢௡௘ of a given phase? An intuitive solution
is to select some quanta in that phase and let them run alone. But,
this method would result in large CPU idleness if there are many
applications and each has many different phases. Fortunately, we
found that in some situations, even when an application run con-
currently with others, its performance is still the same as (or very
similar to) that of when it runs alone. In which case, we can get
the estimated ܥܲܫ௔௟௢௡௘

௤ without running the application alone.

4.1 Identifying Low-Contention Applications
 in a Quantum
Competition for shared memory resource is the primary cause for
performance variations [2, 3, 6-8, 20, 21]. Even if contention hap-
pens in an unpredictable way, we observed that at least in three
cases, the execution of an application suffers little or minor inter-
ference. Hence, we could assume that ܥܲܫ௔௟௢௡௘

௤ ൎ ௦௛௔௥௘ௗܥܲܫ
௤ in

those cases.

Figure 2. Architecture overview of the evaluation system.

In this section, we use measured results on real systems to better
explain the phenomenon. Figure 2 shows the evaluation system.
The system is equipped with two Intel Xeon E5410 quad-core
processors. Each core has a private L1 data cache, and each 2
cores share one L2 data cache (LLC) on the chip. The benchmarks
are from SPEC2006 suite, compiled by Intel Compiler with flag -
O3, and use the reference input set. We generate 10 random
benchmark mixes. To evaluate the contention on the main
memory, we run benchmarks on cores 0, 1, 4 and 5 to isolate the
impact of the shared cache. We also evaluate the situation in
which both cache and main memory are shared by executing them
on cores 0, 1, 2 and 3. We use Bus Transaction Rate (BTR) to
characterize the memory-bandwidth requirement of the execution.
BTR is defined as the number of full-cache-line bus transactions
per microsecond. The realistic peak BTR of the memory bus is
120 trans./usec, and that of the FSB is 80 trans./usec. The OS is
Linux, kernel version v2.6.29.

In this paper, we call the execution part of an application during a
scheduling time quantum an application segment, or segment for
short. In each segment, its ܥܲܫ௦௛௔௥௘ௗ

௤ can be obtained via PMU.
We also get its real ܥܲܫ௔௟௢௡௘

௤ by querying an offline performance
profiling file, which is generated by executing the application
alone on the same system. At last we can calculate its speedup as
௦௛௔௥௘ௗܥܲܫ

௤ ௔௟௢௡௘ܥܲܫ
௤ൗ . Note the method of obtaining ܥܲܫ௔௟௢௡௘

௤ by
profiling is only for our evaluation and analysis purpose. It is not
a part of our scheduling policy.

Memory Bandwidth Contention: We associate the speedup of
each segment s with two memory-bandwidth related metrics:
௦ܴܶܤ݂݈݁ܵ , i.e., the BTR of s when running with others, and
 ௦, i.e., the total BTR of s and all of its co-runnersܴܶܤܹ݁݀݅ݏݕܵ
within the quantum. To show the correlation among the metrics,
Figures 3(a) and 3(b) plot the evaluation results of the same ran-
domly selected and representative 1k segments in private-cache
mode. Figure 3(c) shows a subset of them. The three low-
contention cases are as follows:

 The bandwidth requirement of a segment is extremely low
(Criterion 1). In this case, its performance degradation due

to bandwidth contention is always small, no matter what ap-
plications it runs with. Evaluation results shown in Figure
3(a) confirm that memory-intensive segments generally suf-
fer more slowdown than less intensive ones [1]. In this pa-
per, we set a threshold ܴܶܤௌ௘௟௙௅௢௪ to 4% of the peak BTR.
If BTR of a segment is smaller than the threshold, we as-
sume its ܥܲܫ௦௛௔௥௘ௗ

௤ is similar to ܥܲܫ௔௟௢௡௘
௤ .

 The system wide bandwidth utilization is low (Criterion 2).
In [4], authors found that even when the average bandwidth
requirement of concurrent segments is lower than the realis-
tic peak bandwidth of bus, contentions still happen because
of the fluctuation in memory intensity within the segments.
Only when the system bandwidth utilization is much lower
than peak, the remaining available bandwidth could tolerate
the fine-grained contention and that results in a relatively
smaller slowdown. In this paper, we set a system-wide BTR
threshold ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪ to be one third of the peak BTR. If
the system-wide BTR is smaller than ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪ , we
can assume ܥܲܫ௦௛௔௥௘ௗ

௤ is similar to ܥܲܫ௔௟௢௡௘
௤ for all the con-

current segments.

 The system wide BTR is larger than ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪ but
only one of the concurrent segments is memory-intensive,
i.e., whose BTR is larger than ܴܶܤௌ௘௟௙௅௢௪ (Criterion 3). Se-
vere contention only happens when there are at least two
memory intensive segments that are fighting against each
other. Figure 3(c) shows a subset of evaluated segments that
belong to this case. Compare it with Figure 3(a), we found
using this criterion could successfully pick up those quanta
that have inherently high memory requirement but suffer
relatively small slowdown.

Cache and Bandwidth Contention: Similarly, Figures 3(d,e,f)
show the execution results in shared-cache mode. Compared to
the results in private-cache mode, we have the following observa-
tions. First, the performance degradation of the application seg-

ments could become more severe because of the added shared
cache contention. Second, the tendency of performance variations
is quite similar to that of the private-cache mode. Previous work
also shows that contention for shared cache is not the dominant
cause for performance degradation, but the contention in many
components of the main-memory is [1]. Although the segments
selected according to the abovementioned three criteria would
have a bigger performance degradation compared to that in the
private-cache mode, their performance degradation is still rela-
tively small. As will be shown later, the information gathered
from such co-scheduled applications will help to estimate the
௔௟௢௡௘ܥܲܫ

௤ in each executed quantum.

4.2 Phase Identification and Performance
 Information Management
Program phase behavior has been studied extensively. In this pa-
per, we use a runtime basic block vector (BBV)-based [14-17]
phase identification scheme to classify similarly behaved quanta
into a phase. BBV analysis has been shown to be an effective
method of identifying phases in programs [14, 15].

During the execution of each application segment, we use PMU to
sample its instruction pointers (IP) and construct a BBV. Each
element of the BBV maps to a static basic block, and its value is
increased by 1 when an IP sample falls into it, so the BBV reflects
the distribution of the sampled IPs in the application’s code space.
We quantify the similarity of two normalized BBVs by calculat-
ing their Manhattan Distance, as shown in Equation (4), where ݔ௜
and ݕ௜ is the element of vector X and Y respectively, and N is the
number of static basic blocks in application binary. If the Manhat-
tan Distance of two BBVs is smaller than a threshold, the corre-
sponding segments are in the same phase.

,ሺܺ݁ܿ݊ܽݐݏ݅ܦ݊ܽݐݐ݄ܽ݊ܽܯ ܻሻ ൌ෍ ௜ݔ| െ |௜ݕ
ே

௜ୀଵ
 (4)

Evaluations on PMU sampling overhead and phase identification
accuracy are in Section 7.2 and 7.7.

For each application, we maintain a phase table to record the per-
formance information of its phases. The goal is to estimate the
run-alone-performance of a given phase, denoted as ܥܲܫ௣௛௔௦௘ .
After the execution of a quantum q, firstly we do phase identifica-
tion and calculate some basic performance metrics such as
௦௛௔௥௘ௗܴܶܤ

௤ ௦௛௔௥௘ௗܥܲܫ ,
௤ and system-wide BTR according to the

PMU data. We then check whether the application’s execution
meets one of the three low-contention criteria. If it meets, its per-
formance data is considered valid, otherwise, it is invalid. In any
case, we update the performance information in the phase table
following the method shown in Table 1. Before a phase gets its
first valid execution, ܥܲܫ௣௛௔௦௘ is the average of all invalid histo-
ries. After the phase gets its first valid execution, the intended
value of ܥܲܫ௣௛௔௦௘ is the average of all valid histories. The method
provides the phase with a running estimate, and the three low-

(a) Self BTR vs Speed (PC) (d) Self BTR vs Speed (SC)

(b) SysWide BTR vs Speed (PC) (e) SysWide BTR vs Speed (SC)

(c) The Criterion 3 Subset(PC) (f) The Criterion 3 Subset(SC)

Figure 3. Speedup over alone run on private cache mode (PC)
and shared cache mode (SC). X-axes are the percentage of

measured BTR compared to peak BTR. Y-axes are speedups,
1 means no slowdown. The solid lines show the curve-fitting of

the points. The dashed lines illustrate the thresholds.

Table 1. Per-Phase Performance Info Update Method

Exec.
history

௦௛௔௥௘ௗܥܲܫ
௤ of

current quantum
Updated	ܥܲܫ௣௛௔௦௘

None Valid/Invalid ܥܲܫ௣௛௔௦௘ ൌ ௦௛௔௥௘ௗܥܲܫ
௤

#valid=0
Invalid

ሺܥܲܫ௣௛௔௦௘ ∗ ݊ ൅ ௦௛௔௥௘ௗܥܲܫ
௤ ሻ/ሺ݊ ൅ 1ሻ

 =௣௛௔௦௘ܥܲܫ

Valid ܥܲܫ௣௛௔௦௘ ൌ ௦௛௔௥௘ௗܥܲܫ
௤

#valid >=1
Invalid Unchanged

Valid
ሺܥܲܫ௣௛௔௦௘ ∗ ݊ ൅ ௦௛௔௥௘ௗܥܲܫ

௤ ሻ/ሺ݊ ൅ 1ሻ
 =௣௛௔௦௘ܥܲܫ

0
0.2
0.4
0.6
0.8
1

0% 4% 8% 12%16%20%24%
Self BTR / Peak BTR

0
0.2
0.4
0.6
0.8
1

0% 4% 8% 12%16%20%24%
Self BTR / Peak BTR

0
0.2
0.4
0.6
0.8
1

0% 33% 67% 100%
Sys‐Wide BTR / Peak BTR

0
0.2
0.4
0.6
0.8
1

0% 33% 67% 100%
Sys‐Wide BTR / Peak BTR

0
0.2
0.4
0.6
0.8
1

0% 10%20%30%40%50%60%
Self BTR / Peak BTR

0
0.2
0.4
0.6
0.8
1

0% 10%20%30%40%50%60%
Self BTR / Peak BTR

contention criteria work as a filter to let only suitable data partici-
pate in the estimation of ܥܲܫ௣௛௔௦௘.

Finally, the estimated ܥܲܫ௔௟௢௡௘
௤ for this quantum is the larger one

between ܥܲܫ௣௛௔௦௘ and ܥܲܫ௦௛௔௥௘ௗ
௤ , because we assume the IPC of a

simultaneously running segment could not be larger than that of
when it runs alone.

4.3 Training Quantum
During execution, a phase of an application may never have a
quantum that fits any of the three low-contention cases, and it
degrades the accuracy of the estimation. In that case, we can tem-
porarily change the scheduling policy and inject a training period
to create necessary low-contention situations for the phase.

For each application, we use a Markov predictor to predict its
phase changes based on its full histories. To tolerate incorrect
prediction, the predictor reports several phases that are most likely
to appear in next quantum according to their transferring probabil-
ities. If one of the predicted phases has appeared at least twice in
history and we have not obtained its valid ܥܲܫ௔௟௢௡௘ yet, that ap-
plication will become a training-target-candidate. A training target
selection policy will be used to determine the final training target
if there are multiple candidates (Section 4.5), then FPS transfers
the scheduling policy to training in next quantum

Algorithm 2 shows the training algorithm. Firstly, the training
target is selected to run. The policy then selects proper co-runners
to let the system-wide bandwidth requirement close to but not
exceeding ܴܶܤௌ௬௦௪௜ௗ௘௅௢௪ (to meet Criterion 2). To do so, it goes
through all un-selected applications to compute their fitness, and
the application whose bandwidth requirement is closest to the
remaining bandwidth per remaining core has the highest priority
to be scheduled. Similar fitness calculation has been used in pre-
vious works [4, 12, 13] as a throughput-oriented scheduling policy.
After that, the policy selects other non-memory-intensive applica-
tions, if possible, to meet Criterion 3. Finally, there may be re-
maining CPU cores, but we cannot assign applications to them

because of the bandwidth constraints. In Section 5, we will dis-
cuss the impact of such CPU idleness on the system throughput.

Task color: If some applications always be selected as co-runner
of the training target, it would upset the desired system fairness.
So we improve the training policy with a task-coloring mecha-
nism. At runtime, we classify the applications into 2 exclusive
categories (colors). The application with maximal progress cur-
rently and those whose progress would become the maximal if it
executes in the next quantum (predicted according to the histories
in phase table) are colored as black. Others are non-black. Sched-
uling a black application may make its progress even larger than
current maximal progress and degrade system fairness. So the
improved training policy first finds the best-fit application among
the non-black ones (Line 07 of Algorithm 2 is changed to “for
each non-black app p in wait-queue do”). The black applications
will not be scheduled unless the number of non-black applications
is smaller than the number of CPU cores.

Reduction of Training Period: For some phases, such as itera-
tive execution of the body of a loop (so called loop-dominated
phases), the performance of part of its execution already represent
that of the entire run. This phenomenon gives us an opportunity to
further reduce the CPU idleness caused by training. In this paper,
we set the length of a training quantum to one-quarter of a normal
quantum. If the trained phase is loop-dominated, the distribution
of the sampled IPs should remain the same for the rest of the
quantum, and the partial execution could still get valid ܥܲܫ௔௟௢௡௘.
If the phase is not loop-dominated, partial execution would result
in a very different IP sampling distribution, and the executed
quantum would be recognized as different phases. It will not mis-
lead the ܥܲܫ௔௟௢௡௘ estimation of the targeted phase.

4.4 Training for Applications with Phase
 Fluctuation
Training by phase prediction requires phases to be correctly pre-
dicted. If the accuracy of prediction is low, many training quanta
will be wasted, and it also misses the training opportunities for
other phases. Figure 4 shows the phase patterns of two different
applications that result in different prediction accuracy. Phases of
bwaves appear in long and stable periods, so the Markov predictor
would work well on it. In contrast, the phases of leslie3d fluctuate
greatly. The reason is its executed code region changes frequently,
and when it runs concurrently with others, contention and partial
training make the quantum boundary shift unpredictably com-
pared to when it runs alone. As a result, the BBV of each quantum
looks different, and forms a hard-to-predict phase sequences.

So we introduce another training trigger for applications with fast
fluctuating phases. In the beginning, the training is still guided by
phase prediction. For an application, if we find the prediction
accuracy of quanta is getting very low, the application is identi-
fied as having fluctuating phases. It is changed to a sequential
training mode: the application is trained continuously in the next
N quanta (N=6 in our studies). The motivation is that, if its phases
fluctuate, a continuous execution of N quanta is very likely to
cover most of the static phases and obtain their valid ܥܲܫ௔௟௢௡௘ .
The scheduling algorithm is unchanged, but the length of training
is forced to a full quantum.

4.5 Distribution of Training Quanta Among
 the Applications
Training could always improve the accuracy of ܥܲܫ௔௟௢௡௘ estima-
tion of applications. But we found that in a particular case, alt-
hough the estimation accuracies are improved for some applica-

Algorithm 2: Scheduling Algorithm - Training
01
02
03
04
05
06
07
08

09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// schedule the training target app t
move app t to run-queue
௥௘௠௔௜௡ܴܶܤ ൌ ௌ௬௦௪௜ௗ௘ௐ௘௔௞ܴܶܤ െ ௥௘௤௨௜௥௘ௗܴܶܤ

௧
௥௘௠௔௜௡ܧܴܱܥ ൌ 1-ݏ݁ݎ݋ܿ#
// limit system-wide BTR (to meet criterion 2)
while ܴܶܤ௥௘௠௔௜௡>0 do

for each app p in wait-queue do

௉ܵܵܧܰܶܫܨ ൌ ଵ

ฬ
ಳ೅ೃೝ೐೘ೌ೔೙
಴ೀೃಶೝ೐೘ೌ೔೙

ି஻்ோೝ೐೜ೠ೔ೝ೐೏
ು ฬ

end for
find app with maximal fitness  app f
௥௘௠௔௜௡െൌܴܶܤ ௥௘௤௨௜௥௘ௗܴܶܤ

௙
if (ܴܶܤ௥௘௠௔௜௡ ൐ 0) then

move app f to run-queue
௥௘௠௔௜௡ܧܴܱܥ െ െ

end if
end while
// meet criterion 3
if #mem-intensive in run-queue is no larger than 1 then

for each app p in wait-queue do
if (ܴܶܤ௥௘௤௨௜௥௘ௗ

௣ ൑ ௥௘௠௔௜௡ܧܴܱܥ && ௦௘௟௙ܴܶܤ ൐ 0)
move app p to run-queue
௥௘௠௔௜௡ܧܴܱܥ െ െ

end for
end if

tions, it may lead to system fairness degradation because the train-
ing quanta are not properly distributed among the applications.

Figure 5 shows such an example. Consider a situation where all
the applications in a workload are memory intensive, and all of
them will experience large slowdown due to memory contention.
The application with maximal and minimal slowdown are B and
A respectively, as shown in case 1, and the system unfairness is
determined by the difference of their slowdowns. Case 2 shows
that when we have sufficient training quanta, the	ܥܲܫ௔௟௢௡௘ estima-
tion accuracies of all applications will improve and approach the
upper bound of 100%, and the gap between the estimated maxi-
mal and minimal slowdowns becomes smaller and system fairness
improves. However, if FPS doesn’t have enough training quanta,
and they are not properly distributed among the applications, e.g.,
applications A used most of the trainings to improve its own
௔௟௢௡௘ܥܲܫ estimation accuracy, while that of the others’ remains
nearly unchanged, as a result, the gap between the estimated max-
imal and minimal slowdowns becomes larger, and system fairness
degrades (Case 3). What we expect is shown in case 4, where the
trainings are properly distributed, so ܥܲܫ௔௟௢௡௘ estimation accura-
cies of all applications could improve. Intuitively, the improve-
ment of B is larger because it has larger slowdown, and system
fairness improves.

In this paper, we propose a training distribution policy. In FPS, an
application segment can get its valid estimated ܥܲܫ௔௟௢௡௘

௤ from the
low-contention executions, or from other segments that belong to
the same phase. There also exist some segments that have not got
their valid ܥܲܫ௔௟௢௡௘

௤ estimation. We define the valid data coverage
of an application to be the ratio between the number of segments
that have a valid ܥܲܫ௔௟௢௡௘

௤ estimation and the number of all exe-
cuted time quanta. At runtime, FPS updates the coverage metric
for each application during its execution. When it is going to in-
sert a training quantum, firstly it checks all the applications and
finds all the training-target-candidates, and finally, it selects the
one with minimal coverage among them as the training target.
The purpose is to let the applications keep similar valid data cov-
erage during execution.

Under this distribution policy, all applications will have chances
to use a training quantum, and intuitively the one with larger
slowdown will get more training opportunities because it has rela-
tively smaller valid data coverage. Note that this policy is always
applied in FPS, no matter what the current workload is, we found
it especially effective when the workload is memory-intensive and

the number of training period is limited, because it could avoid the
unbalanced ܥܲܫ௔௟௢௡௘ estimation accuracy improvement among the
applications.

4.6 Shared Cache Considerations
Unlike bandwidth contention, there is no easily identifiable situa-
tion in which we can assume the cache contention is small and
only depends on simple performance statistics. There may be 2
ways to address the shared cache contention. First, train an appli-
cation on an unified cache, but this method would involve huge
overhead because we need to train at least once for each phase of
each application, and at least one CPU core have to be idle. Se-
cond, use stack-distance analysis [18-20], but it needs actual
memory access traces, which is hard to obtain at runtime without
expensive instrumentations.

Nevertheless, we still applied some techniques that could mitigate
as much cache contention as possible without introducing further
overheads. First, during normal execution in which all CPU cores
are used, we adapt the Distributed Intensity Online (DIO) thread-
CPU mapping policy [1] to schedule high miss-rate applications
to different caches, so that the miss rate is evenly distributed
among the caches. Second, when it is in a training period in which
at least one CPU core is idle, we will leave the core that shares the
same LLC with the training target idle. The remaining applica-
tions are assigned to other cores using the DIO policy. Our eval-
uation shows that, the accuracy of the estimate for ܥܲܫ௔௟௢௡௘ on a
shared-cache system also improves significantly, and system fair-
ness improvement is no less than that on a private cache system.

5. SYSTEM SOFTWARE SUPPORT
A Fairness-Throughput Tuner: Training could improve the
accuracy of ܥܲܫ௔௟௢௡௘ estimation and benefit system fairness, but
the side effect is CPU idleness and throughput degradation. We
quantify the overhead caused by training using Equation (5):

௧௥௔௜௡݄݀ܽ݁ݎ݁ݒܱ ൌ
௥௔௜௡ௐ௔௦௧௘்ܥ

௪௢௥௞௜௡௚ܥ

ൌ
∑ ሺ#ܿݏ݁ݎ݋ െ ௧ሻܽݎܽܲ݊݅ܽݎܶ ൈ ௦௛௔௥௘ௗܥ

௧
௙௢௥ ௘௔௖௛ ௧௥௔௜௡௜௡௚ ௤௨௔௡௧௨௠ ௧

∑ ∑ ௦௛௔௥௘ௗܥ
௤

௙௢௥ ௘௔௖௛	௤௨௔௡௧௨௠	௤௙௢௥ ௘௔௖௛ ௔௣௣

(5)

 ௥௔௜௡ௐ௔௦௧௘ is the number of cycles wasted in training quanta. It்ܥ
is further calculated as the sum of wasted cycles by each idle CPU
core in each training quantum t. ܶܽݎܽܲ݊݅ܽݎ௧ is the training paral-
lelism, i.e., the number of simultaneously running applications in
training quantum t, and ܥ௦௛௔௥௘ௗ

௧ is number of cycles it lasts.
 ௪௢௥௞௜௡௚ is the number of cycles that all CPU cores are executingܥ
a job. It is the sum of the number of executed cycles in each quan-
tum q (denoted as ܥ௦௛௔௥௘ௗ

௤) of each application.

Recall that in FPS, we reduce the number of training quanta and
increase training parallelism by identifying the low-contention
executions. FPS also uses shorter training quanta. As a result, the
overhead of training could be significantly reduced. In addition,
by measuring the training overhead and setting a limitation, FPS
provides an effective and robust interface to the OS, and it allows

(a) 410.bwaves – run with random co-runners

(b) 437.leslie3d – run with random co-runners
Figure 4. Applications with different phase behaviors.

Figure 5. Example of the effect of training distribution

0

5

10

15

20

0

0.5

1

1.5

1 21 41 61 81 101 121 141 161

P
h
as
e
 ID

IP
C

Executed Time Quantum

IPC_alone Phase ID

0

4

8

12

16

0

0.5

1

1 21 41 61 81 101 121 141 161

P
h
as
e
 ID

IP
C

Executed Time Quantum

IPC_alone Phase ID

0.4
0.5
0.6
0.7
0.8
0.9
1

case 1 case 2 case 3 case 4

(E
st
im

at
e
d
)

Sp
e
e
d
u
p

min slowdown
max slowdown

A
B

A
B

A
B

A

B

IPC
estimation
improves

tradeoff between system fairness and throughput: the more train-
ing we do, the more accurate the estimated run-alone performance
becomes, and the more fairness improvement we could get, while
the expense is more CPU idleness. It makes FPS adapted to dif-
ferent fairness objectives. Relevant evaluation results will be
shown in Section 7.4 and 7.5.

Thread Weight: The policy we have described so far assumes
that all applications are of the same priority. The policy can be
easily extended to support different thread weights and differenti-
ated performance. We assume a higher weight will result in a
higher performance. We define ݏݏ݁ݎ݃݋ݎܲ݀݁ݐ݄ܹ݃݅݁	 ൌ
 The policy uses weighted progress instead of .ݐ݄ܹ݃݅݁/ݏݏ݁ݎ݃݋ݎܲ
measured progress, so an application with a higher weight would
appear to achieve less progress than it really does. As a result, it
will obtain more time quanta and result in a higher performance.

Task Submission and Completion: Real applications are differ-
ent in execution time, and they may enter or exit from the system
at any time. As a result, not all parts of applications keep running
concurrently, so in this situation, FPS does not try to guarantee a
fair slowdown of the entire run of each application respectively.
Instead, we divide the execution into multiple concurrent regions.
Concurrent regions transfer from one to another when the compo-
sition of concurrent applications changes, i.e., when a new appli-
cation start to run on the system, or an old application terminates.
The idea of FPS is to guarantee the fairness within each concur-
rent region. When a new application is submitted, its progress
should be initialized to zero. At the same time, for each old appli-
cation i that is still running on the system, its progress should be
recalculated as ݏݏ݁ݎ݃݋ݎ݌௜ ൌ ௜ݏݏ݁ݎ݃݋ݎ݌ െ ௠௜௡, whereݏݏ݁ݎ݃݋ݎ݌
-௠௜௡ is the smallest progress among all the old applicaݏݏ݁ݎ݃݋ݎ݌
tions. The old applications get reduced progress to avoid being
throttled. When an application exits from the system, the progress
of other applications remain unchanged.

6. METHODOLOGY
Scheduler Implementation: In order to evaluate the effective-
ness of our scheduling policy, we implemented a user-level pro-
cess scheduler on Linux. The scheduler itself executes as a dae-
mon. When a job is submitted, the scheduler forks out the process
and creates a PMU sampling context for it. The scheduler sets a
real-time timer to count the scheduling time quanta. When the
timer expires, the scheduler is notified by a signal and it enters the
scheduling routine. The main steps have been described in Section
3.2. The applications are paused by PTRACE_ATTACH, so that
they will not be scheduled by the Linux kernel. At the end, we let
the selected applications continue to run using
PTRACE_DETACH, reset the quantum timer and let the sched-
uler sleep to wait for the next notification.

System Setup: We use the same system described in Section 4.1.
Table 2 shows the system setups for our evaluations. When evalu-
ated on a 4-core system, we use different CPU cores to create
different scenarios of resource contention. When all used cores are
on the same chip, the shared front-side bus becomes the bottle-
neck because its realistic peak bandwidth (80 trans./usec) is

smaller than that of the memory bus (120 trans./usec). When the
cores are on different chips, the potential pressure from the 2
FSB’s to the memory bus is 160 trans./usec. It is larger than the
realistic peak bandwidth of the memory bus, so the memory bus
becomes the bottleneck. Unless stated otherwise, Table 3 shows
the parameters used in our evaluation.

Table 3. Parameters setup of scheduler

Scheduling quantum length 100ms
PMU sampling period 500k instructions
BBV similarity threshold 0.7
Training overhead limitation Unlimited
Sequential training trigger #failed training>5 &&

failure ratio>60%
Workloads: The workloads are constructed using the SPEC CPU
2006 suite. Firstly, we do length normalization. We run each
benchmark alone for 10 seconds, and record the number of in-
structions executed. The same part of execution will be added
when a benchmark is selected to run. Job normalization eliminates
the variation of the application length. It results in a fair measure
of system unfairness because almost all parts of benchmarks keep
running concurrently. It also gives fair measurement of system
throughput because if the applications are different in length, load
balancing could influence the results significantly [4].

In reality, the execution times of applications are different, as we
discussed in Section 5, FPS divides the execution into multiple
concurrent regions, and guarantee the fairness within each region.
The progress of applications are recalculated when region chang-
es, so the scheduling results of regions are relatively independent
of each other, and we can focus on the results of some specific
and representative regions that created by length normalization.

It is more challenging to evaluate the first 10 seconds than in a
longer run because the number of quanta in each phase becomes
relatively smaller, so the workloads’ throughput becomes more
vulnerable to the CPU idleness due to training. 483.Xalancbmk is
excluded from the benchmark pool because it has a long initializa-
tion period so its behavior in the first 10 seconds changes mono-
tonically and does not have a repeated phase. Our current imple-
mentation does not handle this situation, but it can be extended in
the future to detect such an application: it counts the times that
each phase appears, and if most of the phase does not repeat, we
would let it run under a regular scheduling policy.

To evaluate the generality of FPS, we use 10 randomly generated
multiprogramming workloads, as shown in Table 4. There are 8 to
16 randomly selected benchmarks in each workload for our 4-core
experiments. We use the metric Ideal Average Bandwidth Re-
quirement (called IABW for short) defined in [4] to characterize
the average bandwidth requirement of a workload, and the work-
loads are reordered by their IABW in ascending order. When
evaluated on the 8-core system, we use the same benchmark com-
bination but each benchmark is spawned twice. We also use other
manually constructed memory-intensive workloads for evaluation
purposes. The details are in Section 7.5.

Table 2. Evaluation System Setups

Setup name CPU cores used LLC
Bandwidth

bottleneck @
Per-core LLC

Size (MB)
Per-core BTR
(trans./usec)

4core-private-cache (PC) 0, 1, 4, 5 Private Memory Bus 6 120/4=30
4core-shared-cache-diff-chip (SC-1) 0, 1, 2, 3 Shared Memory Bus 3 120/4=30

4core-shared-cache-same-chip (SC-2) 0, 2, 4, 6 Shared Front Side Bus 3 80/4=20
8core 0-7 Shared Memory Bus 3 120/8=15

Metrics: We compare the results of FPS to the native Linux
scheduler (kernel v2.6). In order to show fairness improvement,
we measure system unfairness as defined in Section 3.1. We use 2
metrics to evaluate the impact of FPS to system throughput: work-
load turnaround time, i.e., the time from all applications start at
the same time to the last application finishes, and extended
weighted speedup (EWSpeedup). The original weighted speedup
[11] was commonly used to measure the throughput of multipro-
cessors systems on which the number of concurrent threads does
not exceed the number of CPU cores. It is calculated as the sum of
the speedups of all concurrent applications. However, a job
scheduling policy may pathologically improve this metric by forc-
ing all jobs run serially so that each job suffers no slowdown. So
we define extended weighted speedup as shown in equation (6).

݌ݑ݀݁݁݌ܹܵܧ ൌ ෍
௔௟௢௡௘ܥ
௜

௦௛௔௥௘ௗܥ
௜ ൅ ௪௔௦௧௘ௗܥ

௜

ேିଵ

௜ୀ଴

 (6)

The key to the definition is that, when calculating the speedup of
applications i, if any CPU core is idle before the number of re-
maining applications becomes smaller than the number of availa-
ble cores, the wasted cycles on the idle CPU core are also counted
as its execution time. In our policy, CPU idles are caused by the
training quanta, and we attribute the wasted cycles to the training
target in the corresponding training quantum.

Prior works use Harmonic Mean of Speedups [13] to give a com-
bined measure for both fairness and throughput. We don’t use this
metric because it is determined by applications’ individual IPCs,
while our process scheduling technique is not to give the applica-
tions fair IPC during execution, but to adjust the CPU time distri-
bution to achieve fair execution time.

7. EVALUATION RESULTS

7.1 4-core System Results
Figure 6 shows the average performance of 10 random workloads
on the 4-core systems. We evaluate 3 different scheduling policies:
the native OS, FPS and Optimal. The optimal policy uses our
fairness-oriented scheduling algorithm but IPCୟ୪୭୬ୣ of each quan-
tum comes from offline profiling runs instead of runtime estima-
tion, as described in Section 4.1.

In the private-cache mode, the unfairness under OS scheduler
ranges from 1.08 to 1.23, the average is 1.14. FPS improves fair-
ness on all workloads. The average of unfairness is decreased to
1.06, and about 53.5% of the unfairness is eliminated. On the
shared-cache-diff-chip mode, the system peak bandwidth is un-
changed but cache contention is added. Cache contention and the
resulted higher pressure to bandwidth let the system unfairness

under OS increased to 1.22. About 65.0% of the unfairness is
eliminated by FPS, and it decreased to 1.08. On the shared-cache-
same-chip mode, bandwidth contention is further increased. The
unfairness under OS is decreased to 1.29. The unfairness under
FPS is 1.10. FPS eliminates about 65.8% of the unfairness. Re-
sults show that FPS is effective in eliminating unfairness on both
private- and shared-cache systems.

(a) Unfairness (lower is better)

(b) Turnaround Time Speedup
over OS (higher is better)

(c) EWSpeedup over OS (higher
is better)

Figure 6. Average performance on 4-core systems

For all the evaluated modes, the most severe system throughput
degradation is about 2% compared to OS, no matter whether it
was measured in workload turnaround time or EWSpeedup. The
average decrease is 1.1%, 2.06% and 1.12% respectively for the
three execution modes. The main sources of the degradation is
PMU sampling and CPU idleness caused by training.

In every situation, the optimal policy achieves almost perfect fair-
ness on all workloads and the best throughput. It shows the effec-
tiveness of the fairness-oriented scheduling algorithm.

 Estimation Accuracy ࢋ࢔࢕࢒ࢇ࡯ࡼࡵ 7.2
To give an insight into why FPS improves system fairness, we
analyze the accuracy of our ܥܲܫ௔௟௢௡௘ estimation scheme in this
section. We use the evaluation results on the shared-cache-same-
chip mode because the resource contention is the most severe
among all 4-core modes.

Application Level: For a given benchmark, estimation on each of
its quanta has a cumulative effect on the ܥܲܫ௔௟௢௡௘ estimation ac-
curacy of the entire execution, which is evaluated using Equations

1

1.1

1.2

1.3

1.4

PC SC‐1 SC‐2

U
n
fa
ir
n
e
ss

OS FPS Optimal

96%

97%

98%

99%

100%

101%

102%

PC SC‐1 SC‐2

TT
im

e
 T
h
ro
u
gh
p
u
t

OS FPS Optimal

96%

97%

98%

99%

100%

101%

102%

PC SC‐1 SC‐2

EW
S.
 T
h
ro
u
gh
p
u
t

OS FPS Optimal

Table 4. Random SPEC workloads. The benchmarks in a workload are listed according their run-alone-BTR from high to low.
The expression appx(n) means there are n parallel instance of appx in the workload.

WL index IABW Composition
WL#05 47.1 leslie(2) zeusmp(1) soplex(1) wrf(1) gobmk(1) perl(1) hmmer(2) namd(2) gamess(1) tonto(1)

WL#02 49.3
libquantum(1) leslie(1) lbm(1) sphinx3(1) soplex(1) wrf(2) sjeng(2) gobmk(1) gromacs(1) dealII(1) h264ref(1)
gamess(2) tonto(1)

WL#01 49.9 milc(1) lbm(1) cactusADM(1) astar(1) omnetpp(1) hmmer(1) dealII(1) namd(1)
WL#08 60.0 leslie(1) lbm(2) sphinx3(2) soplex(1) mcf(1) gcc(1) omnetpp(1) wrf(1) gobmk(1) perl(2) dealII(1) gamess(1)
WL#10 65.0 GemsFDTD(1) lbm(1) zeusmp(1) soplex(1) astar(1) calculix(1) gobmk(1) povary(1)
WL#07 65.4 leslie(1) GemsFDTD(1) milc(1) sjeng(1) calculix(2) dealII(2) povary(1)
WL#09 67.4 libquantum(1) GemsFDTD(2) zeusmp(1) gcc(1) astar(1) bzip2(1) perl(1) hmmer(2) dealII(1) h264ref(1)
WL#06 76.6 libquantum(1) milc(1) lbm(2) zeusmp(1) mcf(1) cactusADM(1) astar(1) omnetpp(2) calculix(1) h264ref(1)

WL#04 78.5
libquantum(1) bwaves(1) GemsFDTD(1) sphinx3(1) zeusmp(1) soplex(2) gcc(1) astar(1) hmmer(1) gromacs(1)
namd(1) h264ref(1)

WL#03 90.6 libquantum(1) leslie(1) bwaves(1) milc(2) zeusmp(3) mcf(2) cactusADM(1) wrf(2) sjeng(1) perl(1) hmmer(1)

(7, 8). If we always use ܥܫ ௦ܲ௛௔௥௘ௗ as ܥܲܫ௔௟௢௡௘ in our policy, all
applications will appear to make the same progress in all quanta.
Hence, FPS will allocate the same number of quanta to applica-
tions, which has the same effect as using the native OS scheduler.
We compare our estimation accuracy to that in this situation.

௘௦௧௜_௔௟௢௡௘ܥܲܫ ൌ
∑ ௤ொܫ
௤ୀଵ

∑ ൫ܫ௤ ௘௦௧௜_௔௟௢௡௘ܥܲܫ
௤⁄ ൯ொ

௤ୀଵ

 (7)

ܿܿܣ݅ݐݏܧ ൌ
௘௦௧௜_௔௟௢௡௘ܥܲܫ
௔௟௢௡௘ܥܲܫ

ைௌܿܿܣ݅ݐݏܧ (8) ൌ
௦௛௔௥௘ௗܥܲܫ
௔௟௢௡௘ܥܲܫ

 (9)

Figure 7(a) reports the maximal, minimal and average estimation
accuracy of the benchmarks in each workload respectively. Figure
7(b) report the corresponding system unfairness. As the band-
width requirement of workloads increase, the slowdowns of appli-
cations also increase significantly, e.g., libquantum inWL#03
suffers a slowdown of 1.99X, while that of others may be no more
than 1.1X. The huge gap between the maximal and minimal slow-
down in a workload illustrates the cause of unfairness. The aver-
age accuracy of our ܥܲܫ௔௟௢௡௘ estimation scheme is about 90% for
all workloads, and the gap between maximal and minimal is re-
duced. As a result, system fairness is improved when we further
allocate proper fraction of time quanta according to the estimation.

Quantum Level: There are two necessary requirements to
achieve high estimation accuracy in each quantum. First, the
 ௦௛௔௥௘ௗ of an application in the low-contention co-schedule andܥܲܫ
its ܥܲܫ௔௟௢௡௘ should be as close as possible. We have discussed
and evaluated it in Section 4.1. Second, performance of quanta in
the same phase should be as similar as possible. The accuracy of
phase identification is application-dependent. To evaluate, we run
each benchmark for 10 seconds under our phase identification
scheme. For each identified phase, we compute the relative stand-
ard deviation (%RSD) of the ܥܲܫ௔௟௢௡௘ for the quanta within the
phase. Smaller %RSD means the IPCs of quanta that in the same
phase are similar, and is better. Finally, we report the applica-
tion’s phase identification accuracy by calculating the
weighted %RSD of all phases, as shown in Equation (10).

ܦܴܹܵ ൌ ෍ ௣ݓ ൈ ௣ܦܴܵ
௙௢௥	௘௔௖௛	௣௛௔௦௘	௣

, ௣ݓ	݁ݎ݄݁ݓ ൌ
݊௣

∑ ݊௜௙௢௥	௘௔௖௛	௣௛௔௦௘ ௜
(10)

݊௣ is the number of quanta that belong to phase p. Each phase is
assigned with a weight ݓ௣. Figure 8 shows the phase accuracy of
all benchmarks. The average WRSD is 5%, which shows that the
phase identification scheme could successfully classify the exe-
cuted quanta so that the performance in each phase is quite similar.

7.3 Effectiveness of Training
A segment could get its valid ܥܲܫ௔௟௢௡௘ from one of the following
sources: the three low-contention executions during normal quan-
tum, or training trigged by phase prediction and sequential train-
ing. For each application, we compute the distribution of all valid
 ௔௟௢௡௘ sources, and report the average of all applications in aܥܲܫ
workload, as shown in Figure 9(a). As the bandwidth requirement
of the workload increases, the number of low-contention execu-
tion in normal quanta is reduced. On average, the valid data cov-
erage is 90%. About 30% of the quanta get its valid ܥܲܫ௔௟௢௡௘ via
training. 60% are from spontaneous low-contention executions.

However, the contribution to the ܥܲܫ௔௟௢௡௘ estimation accuracy is
different. We evaluate the contribution of each data source in an
application as follow: the total ܥܲܫ௔௟௢௡௘ estimation improvement
is ܥܲܫ௘௦௧௜_௔௟௢௡௘ െ ௦௛௔௥௘ௗܥܲܫ . To calculate the contribution of
source x, we find all quanta that use source x to estimate ܥܲܫ௔௟௢௡௘

௤ ,
and replace their ܥܲܫ௘௦௧௜_௔௟௢௡௘

௤ with ܥܲܫ௦௛௔௥௘ௗ
௤ . The purpose is to

simulate the situation in which if we did not get a valid ܥܲܫ௔௟௢௡௘
for this quantum, and have to use ܥܲܫ௦௛௔௥௘ௗ instead. We re-
calculate the estimated ܥܲܫ௔௟௢௡௘ of the entire application in this
case as ܥܲܫ௔௟௢௡௘

௘௦௧௜_௪௜௧௛௢௨௧_௫, and the contribution of x is calculated as
ூ௉஼೐ೞ೟೔_ೌ೗೚೙೐ିூ௉஼ೌ೗೚೙೐

೐ೞ೟೔_ೢ೔೟೓೚ೠ೟_ೣ

ூ௉஼೐ೞ೟೔_ೌ೗೚೙೐ିூ௉஼ೞ೓ೌೝ೐೏
. Figure 9(b) shows the contribution

breakdown. It shows that, for most workloads, training plays an
important role on improving the accuracy of ܥܲܫ௔௟௢௡௘ . It is be-
cause training deals with those quanta that have inherently high
memory intensity, so they have a higher potential to suffer a big-
ger slowdown that could cause larger system unfairness.

The average contribution of sequential training appears small
because it only deals with applications with fluctuating phases,
such as leslie3d, milc and zeusmp in SPEC suite. However, it is
important to improve their coverage and the ܥܲܫ௔௟௢௡௘ estimation
accuracy. For example, sequential training contributes 28.8% of
the estimation accuracy improvement for leslie3d in WL#03 and it
improves the estimation coverage from 88.2% to 93.7% and im-
proves the estimation accuracy from 86.8% to 90.9%, compared
to the situation when sequential training is turned off. Significant
estimation improvements are also seen in leslie3d in WL#02, milc
in WL#04 and GemssFDTD in WL#10, etc. Sequential training
can also reduce the number of training quanta because phase pre-
diction accuracy is low for those applications. Sequential training
is triggered in 9 applications in the 10 workloads, and on average,
it improves the ܥܲܫ௔௟௢௡௘ estimation accuracy by 2.1% and reduce
the number of training quanta by 11%.

(a) Application-level ܥܲܫ௔௟௢௡௘ estimation accuracy (1 is best)

(b) System unfairness
Figure 7. 4-core shared-cache-same-chip evaluation results

Figure 8. Phase Identification: Weighted Relative Standard
Deviation (lower is better)

0.4

0.5

0.6

0.7

0.8

0.9

1

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

O
S

FP
S

#05 #02 #01 #08 #10 #07 #09 #06 #04 #03 Avg.

IP
C
 E
st
im

a
ti
o
n
 A
cc
u
ra
cy

max
min
avg

1

1.1

1.2

1.3

1.4

1.5

U
n
fa
ir
n
e
ss

OS

FPS

0%

5%

10%

15%

20%

4
00
.p
er
lb
e
n
ch

4
01
.b
zi
p
2

4
0
3
.g
cc

4
2
9
.m

cf
4
45
.g
o
b
m
k

4
5
6
.h
m
m
er

4
5
8
.s
je
n
g

4
62
.li
b
q
u
an
tu
…

4
6
4
.h
2
6
4
re
f

4
71
.o
m
n
e
tp
p

4
7
3
.a
st
ar

4
1
0
.b
w
av
e
s

4
1
6
.g
am

e
ss

4
3
3
.m

ilc
4
3
4
.z
eu

sm
p

4
3
5
.g
ro
m
ac
s

4
3
6
.c
ac
tu
sA
D
M

4
3
7
.le
sl
ie
3d

4
4
4
.n
am

d
4
47
.d
ea
lII

4
50
.s
o
p
le
x

4
5
3
.p
o
vr
ay

4
5
4
.c
al
cu
lix

4
59
.G
e
m
sF
D
TD

4
6
5
.t
o
n
to

4
70
.lb
m

4
81
.w
rf

4
8
2
.s
p
h
in
x3

A
vg
.

W
ei
gh

te
d
 A
vg
.
%
R
SD

Note phases that never get a valid ܥܲܫ௔௟௢௡௘ also contribute slight-
ly, recall their estimated ܥܲܫ௣௛௔௦௘ is the average of all invalid
histories (refer to Table 1), so it still improves the estimation ac-
curacy for the quanta whose ܥܲܫ௦௛௔௥௘ௗ

௤ is smaller than ܥܲܫ௣௛௔௦௘.

Table 5 shows the statistics of training on a 4-core system. Avg.
Training Parallelism is the average number of co-scheduled ap-
plications in all the training quanta. Memory intensive workloads
suffer more overhead than less memory-intensive ones because
there are less spontaneous low-contention quanta in the former, so
they require more training. WL#03 is the most memory intensive
one among the random workloads, about 25.9% of its executed
quanta are training, but we can finally reduce the overhead to 4.5%
because we reduce the length of a training quantum and increase
the training parallelism as much as possible. The average of over-
head of all workloads is as low as 1.6%.

Table 5. Training Overheads

WL
#Exec.

Quantum
#Train-
Pred.

#Train-
Seq.

Avg. Training
Parallelism

Overhead

#05 376 21 0 2.8 0.5%
#02 472 14 6 3.8 0.1%
#01 246 19 0 2.7 0.8%
#08 498 32 6 2.6 0.9%
#10 266 36 6 2.4 2.4%
#07 274 21 0 3.0 0.6%
#09 413 68 24 3.0 1.8%
#06 468 79 0 2.3 2.3%
#04 504 73 12 2.7 2.3%
#03 715 167 18 2.3 4.5%
Avg. 423.2 53 7.2 2.8 1.6%

7.4 8-core system results
Figure 10 shows the average performance of the 10 workloads on
8-core system. System unfairness under the native OS increases to
1.55 compared to the 4-core modes. FPS could eliminate about 15%
of the unfairness even without any training, because it uses the
data from spontaneous low-contention execution. The overhead is
quite negligible. When we gradually relax the training overhead
limitation, the fairness improves significantly and system
throughput degrades slightly. When the training overhead is un-

limited, FPS eliminates 70% of system unfairness at the expense
of 4.5% system throughput degradation. Compared to the results
on 4-core systems, throughput degradation is slightly larger be-
cause the number of available CPU cores is doubled but the train-
ing parallelism is nearly unchanged. Hence, more CPU idleness is
incurred due to training. Evaluation shows that our fairness-
throughput tuner is effective and robust.

7.5 Results on Memory-Intensive Workloads
Memory intensive workloads would result in more training quanta
than non-memory-intensive ones. If all applications in a workload
are memory-intensive, training overhead may become unaccepta-
ble, and the accuracy of ܥܲܫ௔௟௢௡௘ estimation may also be affected.
In this section, we evaluate the effectiveness of FPS on 5 manual-
ly constructed and representative memory-intensive workloads.
Firstly we use a workload that only includes the top 5 applications
with the largest BTR in SPEC suite, i.e., libquantum, leslie3d,
bwaves, GemsFDTD and milc. There are 2 concurrent instances
for each application. As a result, the IABW of the workload is as
high as 196 trans./usec. This workload is denoted as WL-M. And
then, we pick up another 4 less-memory-intensive benchmarks:
lbm, mcf, astar and gamess. Their average BTRs vary from 27
trans./usec to nearly zero. We add one of them to WL-M respec-
tively to form another 4 workloads. We run the 5 workloads on 4
system setups. The evaluation results are shown in Table 6. By
comparing the results of the workloads and the results on different
system setups, we have the following interesting observations.

Figure 10. Effect of different training limitation

System unfairness under OS: For an extremely memory-
intensive workload where all concurrent applications are memory-
intensive, although all of the applications would experience large
slowdown, the system unfairness remains relatively small because
the difference among the applications’ slowdowns is small. For
example, When WL-M runs under 4-core-private-cache mode, the
maximal and minimal slowdown is 1.92X (for libquantum) and
1.65X (for milc) respectively, and the system unfairness under OS
is only 1.13. Similar results are observed on other 3 system setups,
in which the unfairness are 1.12, 1.17 and 1.25, respectively. They
are all below the corresponding average of the random workloads.
We conclude that severe unfairness is likely to exist when there
are both memory-intensive and non-memory-intensive applica-
tions. Evaluation results confirmed that when we gradually add a
less memory-intensive application into WL-M, the less-memory-
intensive application would suffer much smaller slowdown than
the memory-intensive ones, and the system unfairness become
larger. In the extreme case when WL-M+gamess runs in 8-core
mode, the unfairness is as high as 4.08, which is the largest among
all the workloads that we have evaluated throughout the paper.

Effect of FPS: When the workloads run under FPS and training is
not limited, FPS could still effectively eliminate system unfairness
even for WL-M where the fairness improvement potential is al-
ready small. The average unfairness elimination on the 4 system
setups are 59.7%, 66.0%, 61.4% and 71.1% respectively. But the

No Train

Train 1%
Train 2%

Train 3%
Train

Unlimited
1

1.1

1.2

1.3

1.4

1.5

1.6

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

U
n
fa
ir
n
e
ss

System Throughput (EWSpeedup normlized to OS)

OS

FPS

(a) Quantum number breakdown

(b) Contribution breakdown
Figure 9. Breakdown of valid ࢊࢋ࢘ࢇࢎ࢙࡯ࡼࡵ

ࢗ source

0%

20%

40%

60%

80%

100% None

Train‐seq.

Train‐pred.

Criterion 3

Criterion 2

Criterion 1

0%

20%

40%

60%

80%

100% None

Train‐seq.

Train‐pred.

Criterion 3

Criterion 2

Criterion 1

training overhead is much larger than those random workloads
because there are much less spontaneous low-contention execu-
tions. For example, when WL-M executes in SC-2 mode, the av-
erage valid data coverage of all applications is only 2% if training
is not allowed. If training is not limited, the overheads are be-
tween 10% and 20% for the workloads, and the system throughput
degradations are between 10% and 15% (as shown in the “T.Time
Speedup” and “EWSpeedup” columns). However, we can always
use the proposed fairness-throughput tuner to limit the training
overhead. It is especially suitable when the unfairness under OS is
already relatively small but training is potentially very expensive.
For example, FPS could eliminate system unfairness by an aver-
age of 35.8%, 44.1%, 55.8% and 21.1% respectively for the 4
system setups when training overhead limitation is set to 2%.

Effect of training distribution: Table 6 also shows the unfair-
ness achieved by FPS when we turn off the proposed training
distribution method, which is shown in the “Unfairness-No-
Training-Distribution” column. Instead of keeping similar valid
data coverage of the applications, the compared method always
selects the first training candidate that we meet in the run-queue
as the final training target. Evaluation results show that, when
training is not limited, there is not much difference no matter
training distribution is turned on or off, because when there are
sufficient training quanta to use, the valid data coverage of appli-
cations would all approach their upper bound respectively. While
the training overhead is limited, different quanta distribution
methods would have significant influence on system fairness. We
take WL-M running on SC-2 mode as an example. Under OS, the
maximal and minimal IPC slowdowns are 3.20X (for libquantum)
and 2.15X (for milc) respectively. When training distribution is
off, the unbalanced training resulted in vastly differing valid data
coverage from 2% (for GemsFDTD) to 93% (for libquantum). As
a result, their estimated IPC slowdowns becomes 2.39X and
1.08X respectively, and the unfairness increases from 1.17 to 1.53.
By comparison, when training distribution is on, the maximal and

minimal valid data coverage is 77% and 53% respectively, and it
makes the maximal and minimal estimated IPC slowdowns more
similar, which is 1.52X and 1.80X respectively, and system un-
fairness decreased to 1.13.

7.6 Thread Weight Support
To evaluate the effects of threads with different weights (i.e. pri-
orities), we select 4 different benchmarks whose bandwidth re-
quirements vary greatly from nearly 0% to 46% of the peak, and
run 2 concurrent instances for each benchmark and evaluate them
on a 4-core shared-cache-diff-chip mode. Figure 11 shows the
results. The first set of bars show the performances of benchmarks
under the native OS with the same weight. It shows the perfor-
mance variation due to resource contention. When assigning dif-
ferent weights of 1, 1, 2 and 4 respectively to the applications, OS
would allocate proportional number of quanta to application with
a higher weight (weighted round robin). The results are shown in
the second set of bars. CactusADM still runs 21% slower than
gamess even though they have the same weight, and bwaves’s
performance is still 1.5% smaller than gamess even its number of
executed time quanta is doubled compared to the latter. The third
set of bars shows the results of FPS. FPS enforces thread weight
better because the applications with the same weight have quite
similar performance, and the performances of other applications
are proportional to their weights.

Figure 11. Evaluation of thread weight support

0

0.1

0.2

0.3

0.4

0.5

0.6

OS ‐ Same Weight:
1,1,1,1

Weighted Round
Robin ‐ Dif Weight:

1,1,2,4

FPS ‐ Dif Weight:
1,1,2,4

Sp
e
e
d
u
p
 o
ve
r
R
u
n

A
lo
n
e

416.gamess
436.cactusADM
410.bwaves
470.lbm

Table 6. Evaluation results of memory-intensive workloads (positive/negative values are compared to the OS)

System
Setup Workload

OS
Unfair-

ness

FPS-train-unlimited FPS-train-limited-2%

Unfairness Training
Overhead

T.Time
Speedup

EW-
Speedup

Unfairness-
No Training
Distribution

Unfairness Training
Overhead

T.Time
Speedup

EW-
Speedup

Unfairness-
No Training
Distribution

PC

WL-M 1.13 1.06 (-52.7%) 17.61% -11.93% -10.64% 1.08 (-43.3%) 1.10 (-25.9%) 1.99% -2.82% -1.79% 1.47 (+246.9%)
WL-M+lbm 1.21 1.14 (-34.5%) 20.77% -14.58%-13.20% 1.16 (-22.2%) 1.16 (-24.7%) 2.10% -2.64% -2.14% 1.44 (+107.0%)
WL-M+mcf 1.28 1.13 (-53.3%) 15.76% -10.94% -9.60% 1.18 (-35.9%) 1.20 (-30.1%) 1.96% -1.98% -1.31% 1.34 (+19.9%)
WL-M+astar 1.44 1.08 (-80.9%) 19.52% -14.18%-11.02% 1.12 (-72.9%) 1.25 (-41.9%) 1.97% -2.85% -1.86% 1.41 (-6.8%)
WL-M+gamess 1.65 1.15 (-76.9%) 15.25% -13.32%-10.53% 1.16 (-75.2%) 1.28 (-56.5%) 2.02% -3.10% -1.83% 1.41 (-37.0%)
Average 1.34 1.11 (-59.7%) 17.78% -12.99%-11.00% 1.14 (-49.9%) 1.20 (-35.8%) 2.01% -2.68% -1.79% 1.41 (+66.0%)

SC-1

WL-M 1.12 1.11 (-13.3%) 13.6% -9.56% -10.97% 1.11 (-10.3%) 1.10 (-19.1%) 1.98% -1.58% -2.49% 1.60 (+383.9%)
WL-M+lbm 1.32 1.08 (-74.7%) 18.9% -14.44%-15.94% 1.07 (-77.4%) 1.19 (-40.7%) 1.97% -3.91% -3.90% 1.44 (+36.1%)
WL-M+mcf 1.31 1.08 (-74.5%) 14.4% -9.28% -10.76% 1.08 (-72.5%) 1.12 (-60.8%) 2.02% -1.43% -2.50% 1.50 (+61.6%)
WL-M+astar 1.63 1.10 (-83.8%) 17.7% -12.01%-11.10% 1.14 (-78.1%) 1.28 (-56.4%) 2.11% -2.23% -2.08% 1.38 (-39.5%)
WL-M+gamess 1.69 1.11 (-83.8%) 15.3% -12.13%-11.21% 1.12 (-83.0%) 1.39 (-43.3%) 2.00% -2.71% -3.03% 1.44 (-36.0%)
Average 1.41 1.10 (-66.0%) 15.98% -11.48%-12.00% 1.10 (-64.3%) 1.22 (-44.0%) 2.02% -2.37% -2.80% 1.47 (+81.2%)

SC-2

WL-M 1.17 1.15 (-13.4%) 10.60% -6.02% -6.95% 1.19 (+9.1%) 1.13 (-22.5%) 1.98% -1.90% -2.68% 1.53 (+208.6%)
WL-M+lbm 1.36 1.15 (-57.3%) 9.45% -5.46% -5.17% 1.16 (-54.1%) 1.15 (-56.8%) 1.99% -1.98% -1.56% 1.37 (+4.2%)
WL-M+mcf 1.37 1.17 (-53.7%) 6.92% -4.39% -4.41% 1.18 (-51.6%) 1.10 (-74.3%) 2.00% -1.40% -1.64% 1.55 (+48.2%)
WL-M+astar 1.86 1.06 (-92.5%) 9.11% -5.50% -4.72% 1.18 (-79.0%) 1.22 (-75.1%) 1.97% -2.09% -1.97% 1.32 (-63.5%)
WL-M+gamess 2.46 1.15 (-90.0%) 9.89% -6.30% -5.37% 1.20 (-86.4%) 1.73 (-50.2%) 2.01% -1.93% -2.39% 1.40 (-72.4%)
Average 1.64 1.14 (-61.4%) 9.19% -5.53% -5.32% 1.18 (-67.8%) 1.27 (-55.8%) 1.99% -1.86% -2.05% 1.43 (+25.0%)

8-core

WL-M 1.25 1.14 (-42.5%) 15.58% -8.75% -10.19% 1.17 (-30.8%) 1.19 (-22.6%) 1.80% -1.84% -0.68% 1.29 (+15.8%)
WL-M+lbm 1.51 1.14 (-73.8%) 13.27% -8.08% -8.41% 1.14 (-73.0%) 1.49 (-4.1%) 1.77% -1.39% -0.51% 1.48 (-7.2%)
WL-M+mcf 1.29 1.12 (-59.4%) 32.5% -15.75%-13.42% 1.17 (-42.1%) 1.24 (-14.9%) 1.93% -2.57% -1.19% 1.23 (-18.1%)
WL-M+astar 2.57 1.13 (-91.6%) 24.2% -11.54%-12.08% 1.12 (-92.1%) 2.15 (-26.8%) 1.87% -0.86% -2.57% 2.17 (-25.7%)
WL-M+gamess 4.08 1.36 (-88.2%) 11.0% -7.32% -7.15% 1.30 (-90.1%) 2.94 (-37.0%) 1.78% -2.25% -2.39% 2.98 (-35.6%)
Average 2.14 1.18 (-71.1%) 19.31% -10.29%-10.25% 1.18 (-65.6%) 1.80 (-21.1%) 1.83% -1.78% -1.47% 1.83 (-14.2%)

7.7 Overhead of the Scheduler
Compared to the runs under OS, FPS involves overhead mainly
from the PMU sampling (interrupt handler) and the scheduling
routine (includes the process of PMU data and scheduling). To
evaluate the overhead, we run 4 identical applications simultane-
ously on 4 cores. Compared to OS, execution time under FPS
increases 2.87% in total. The overhead from the scheduling rou-
tine is 1.68%, and the main source of this part is from PMU and
phase related work (overhead from the scheduling algorithm itself
is less than 2� .). Our current user-level scheduler is single-
threaded, but PMU data processing for each running application
can be naturally distributed to the core on which it executed.
Hence, this part of the overhead can be further reduced and made
scalable. The remaining 1.19% overhead comes from the PMU
sampling, which is distributed among applications, so it is also
scalable when the number of cores increases.

8. CONCLUSIONS AND FUTURE WORK
We proposed a fair progress scheduling policy (FPS) to provide
performance fairness on shared-memory multiprocessors. The
basic idea is that, given the same amount of CPU time, if an ap-
plication did less effective work than others because it suffers
bigger slowdown due to resource contention, FPS would allocate
extra time quanta to it.

To monitor system unfairness, we define the forward progress to
quantitatively measure the effective work of an application. The
challenge when calculating the progress at runtime is to estimate
the run-alone performance in each executed quantum while the
application is actually running simultaneously with others. Our
solution is to classify the execution quanta of application into
phases, and obtain their estimated ܥܲܫ௔௟௢௡௘ by constructing and
identifying the low-contention co-scheduled applications. We then
extend the performance information to other quanta that belong to
the same phase in order to help estimating their progress.

FPS does not need any special hardware support. Evaluation re-
sults show that the ܥܲܫ௔௟௢௡௘ estimation accuracy is high and it can
significantly improve system fairness at the expense of slightly
decreased throughput. FPS supports different thread weights. It
also provides an effective tuner to let OS freely tradeoff system
fairness and higher throughput. Combined with the training distri-
bution policy, it is especially suitable for the memory-intensive
workloads where the fairness improvement is smaller but the po-
tential training is expensive.

As a future work, we plan to seek a low-overhead solution to ad-
dress the issue of cache contention and further improve the esti-
mation accuracy. We also plan to design proper metrics and
methodology to address the I/O contention issues.

9. ACKNOWLEDGEMENTS
This research is supported by the Innovation Research Group of
NSFC under the grant 60921002, the National Basic Research
Program of China (973 program) under the grant 2011CB302504,
the National High Technology Research and Development Pro-
gram of China (863 program) under the grant 2007AA01Z110,
2012AA010901 and 2012AA010902, the National Science and
Technology Major Project of China under the grant
2009ZX01036-001-002, and by the U.S. National Science Foun-
dation under the grant CNS-0834599 and CCF-0708822, the Tai-
wan National Science Council under the grant 100-2220-E-001-
001 and 99-2221-E-001-004.

10. REFERENCES
[1] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing

shared resource contention in multicore processors via
scheduling. In ASPLOS-19, 2010.

[2] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via
source throttling: a configurable and high-performance fair-
ness substrate for multi-core memory systems. In ASPLOS-
19, 2010.

[3] A. Fedorova, M. Seltzer, and M. D. Smith. Improving Per-
formance Isolation on Chip Multiprocessors via an Operating
System Scheduler. In PACT-16, 2007.

[4] D. Xu, C. Wu, and P. C. Yew. On mitigating memory band-
width contention through bandwidth-aware scheduling. In
PACT-19, 2010.

[5] H. Y. Cheng, C. H. Lin, J. Li, and C. L. Yang. Memory La-
tency Reduction via Thread Throttling. In MICRO-43, 2010.

[6] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Ac-
cess Scheduling for Chip Multiprocessors. In MICRO-40,
2007.

[7] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. Hsu, and S. Reinhardt. QoS policies and archi-
tecture for cache/memory in CMP platforms. In SIGMET-
RICS, 2007.

[8] R. Iyer. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In ICS-18, 2004.

[9] K. Luo, J. Gummaraju, and M. Franklin. Balancing through-
put and fairness in SMT processors. In ISPASS, 2001.

[10] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair
Queuing Memory Systems. In MICRO-39, 2006.

[11] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for
a simultaneous multithreaded processor. In ASPLOS-9, 2000.

[12] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papa-
theodorou. Scheduling algorithms with bus bandwidth con-
siderations for smps. In ICPP, 2003.

[13] E. Koukis and N. Koziris. Memory and network bandwidth
aware scheduling of multiprogrammed workloads on clusters
of SMPs. In ICPADS-12, 2006.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
ASPLOS-10, 2002.

[15] A. S. Dhodapkar and J. E. Smith. Comparing program phase
detection techniques. In MICRO-36, 2003.

[16] T. Sherwood, S. Sair, and B. Calder. Phase tracking and pre-
diction. In ISCA-30, 2003.

[17] T. Sherwood, E. Perelman, B. Calder. Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation
Points in Applications. In PACT-10, 2001.

[18] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-
Thread Cache Contention on a Chip Multi-Processor Archi-
tecture. In HPCA-11, 2005.

[19] C. CaBcaval and D. A. Padua. Estimating cache misses and
locality using stack distances. In ICS-17, 2003.

[20] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In PACT-
13, 2004.

[21] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch
Scheduling: Enhancing both Performance and Fairness of
Shared DRAM Systems. In ISCA-35, 2008

