Dynamic and Adaptive Calling Context Encoding

Jianjun Li
State Key Laboratory of Computer
Architecture,
Institute of Computing Technology,
Chinese Academy of Sciences
lijianjun@ict.ac.cn

Wei-Chung Hsu

Department of Computer Science,
National Taiwan University
Taipei, Taiwan
hsuwc@csie.ntu.edu.tw

ABSTRACT

Calling context has been widely used in many software
development processes such as testing, event logging, and
program analysis. It plays an even more important role
in data race detection and performance bottleneck analysis
for multi-threaded programs. This paper presents DACCE
(Dynamic and Adaptive Calling Context Encoding), an
efficient runtime encoding/decoding mechanism for single-
threaded and multi-threaded programs that captures dy-
namic calling contexts. It can dynamically encode all
call paths invoked at runtime, and adjust the encodings
according to program’s execution behavior. In contrast to
existing context encoding method, DACCE can work on
incomplete call graph, and it does not require source code
analysis and offline profiling to conduct context encoding.
DACCE has significantly expanded the functionality and
applicability of calling context with even lower runtime
overhead. DACCE is very efficient based on experiments
with SPEC CPU2006 and Parsec 2.1 (with about 2% of
runtime overhead) and effective for all tested benchmarks.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Monitors, Testing tools

General Terms

Performance, Reliability, Experimentation

*To whom correspondence should be addressed.

JrThis work was done when Di Xu attended Institute of
Computing Technol,o%y, CAS

Permission to make digital’or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.
CGO ’14 February 15 - 19 2014, Orlando, FL, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-2670-4/14/02 $15.00.

Zhenjiang Wang
State Key Laboratory of Computer
Architecture,

Institute of Computing Technology,
Chinese Academy of Sciences
wangzhenjiang@ict.ac.cn

*
Chenggang Wu
State Key Laboratory of Computer
Architecture,
Institute of Computing Technology,
Chinese Academy of Sciences
wucg@Qict.ac.cn

Di XUJr
IBM Research - China
Beijing, China
xudi@cn.ibm.com

Keywords

calling context encoding, adaptive, dynamic analysis

1. INTRODUCTION

Calling context is critical for understanding dynamic
behaviors of large programs. It plays an important role
in a wide range of software development processes and
large applications such as testing [11], debugging and error
reporting [12, 16], performance analysis [19], program analy-
sis [20], security enforcement [10], and event logging [5]. For
example, programmers frequently examine calling context
during debugging in the form of stack backtracing. Stack
backtracing is a simple but expensive method, so it is used
only when programmers require interactions in debugging or
when a program failed with core dumps. Recently, data race
detection or debugging for multi-threaded programs consider
more than the immediate circumstances of failures [5] and
more efforts have been focusing on identifying the root
causes of bugs. Analyzing or debugging failures often
involves recording runtime information continuously during
an execution. For example, memory access information
is recorded by dynamic race detectors. Calling context
information is critical and helpful in analyzing the detected
data races and locating the instructions which contributed to
the data race. However, some online methods for computing
calling contexts, such as stack-walking and maintaining the
current location in a calling context tree, are too expensive
in terms of time and space to be commonly adopted. As
a result, most tools resorted to record only static program
locations. Calling context information is also proved to be
very helpful for event log analysis. In [21], calling context
information reduces the events logged, and after removing
redundant events in the replay log, the replay could be
much faster. In this improved event logging process, context
information was collected through stack-walking. This
would incur significant runtime overhead. Therefore, a
more efficient calling context identification method for multi-
threaded applications is called for.

To identify the dynamic execution path efficiently, meth-
ods based on path encoding algorithm [3, 18, 1] are pro-
posed. However, these methods use static encoding so that
they work only on complete call graph. For applications

containing indirect branches (indirect jumps and indirect
calls), existing methods need to identify the targets of
indirect branches using static pointer analysis or training
runs. This causes negative impact on practicability, and
prevent existing methods from being widely used.

This paper presents DACCE (Dynamic and Adaptive
Calling Context Encoding), which can work on incomplete
call graph. It can dynamically encode all call paths invoked
at runtime, including call paths in dynamically loaded
libraries. It does not need source code analyses (for exam-
ple, points-to analysis) or offline training to assist context
encoding. In addition, since DACCE is based on dynamic
instrumentations, it can only encode paths that are actually
invoked during execution. It also can collect information
at runtime, and in return, could be used to support more
efficient encoding/decoding for complex applications with
numerous calling paths. Compared to existing context
encoding methods, DACCE does not require training based
static profiling. Since DACCE is implemented as a shared
library, it could work with other tools more easily. Some
researchers may be concerned about the runtime overhead of
dynamic binary instrumentation that DACCE might incur.
Our prototype has shown that DACCE yields even lower
runtime overhead than existing static encoding methods due
to its adaptive encoding approach.

Nowadays, increased parallelism has been the driving
force in computing rather than increased clock rates. This
ongoing shift toward multicore paradigms has rendered more
and more applications multi-threaded. DACCE is designed
to serve both multi-threaded and single-threaded programs
efficiently.

The main contributions of this work are summarized as
follows:

e We propose a dynamic context encoding algorithm
which can efficiently encode all function calls invoked
at runtime. It can work on incomplete call graph. A
decoding algorithm for the dynamic encoding method
is also provided.

e We propose an adaptive encoding method which can
adjust the encodings according to program’s runtime
behavior.

e Our work expands the applicability of context encod-
ing methods to more applications.

e We have implemented DACCE prototype system and
evaluated it using SPEC CPU2006 and Parsec 2.1.
Experimental results show that DACCE can be prac-
tically applied for both single-threaded and multi-
threaded code.

2. MOTIVATION

2.1 Background: Context Encoding

In [3], Ball and Larus proposed an efficient algorithm (BL
algorithm) to encode intra-procedural control flow paths
taken during execution. PCCE [18] leverages the Ball-Larus
(BL) control flow encoding algorithm to encode acyclic
contexts.

One simple example of context encoding method is illus-
trated in Figure 1. In the figure, instrumentation is marked
on control flow edges and node annotations (i.e. numbers

id=o__ context id
ABDE o
ACDE 1
ABDF o
ACDF 1
ABD o
ACD 1
AB 0
AC 0
A (o]

Figure 1: Example of context encoding

in boxes) represent the number of calling contexts. In the
example, only the edge CD needs to be instrumented by
”id = id + 17, then the contexts of any point in execution
can be clearly distinguished.

In the existing method, it first computes the number
of contexts for each node in a topological order. It then
traverses each node n to encode the call edges and insert
instrumented code. Each node n is encoded by the numbers
in the range of [0, numCC(n)], in which numCC(n)
represents the number of calling contexts of node n. For each
edge e =< p,n,l > (n is the current node, p is the parent of
n, and [is the callsite), the instrumentation is added before
and after the call site [. Before I, the context identifier id
is incremented by the sum of all preceding caller’s numCCs;
after [, id is decremented by the same amount.

2.2 Our Goal and Issues

In this paper, we aimed to design a context encoding
method, which can be easily applied to a larger scope of
applications. To achieve this goal, the following issues
should be efficiently solved.

Issue 1: Extra profiling runs and static program
analysis caused by indirect calls.

For static encoding, we need to know the complete call
graph before encoding. To identify all targets of indirect
calls, points-to analysis is needed in previous approach such
as PCCE [18]. Due to the conservative nature of points-
to analysis, many possible but unlikely targets would be
identified. In real runs, the actual number of targets may
be much smaller than what was identified. That means there
are many false positives among the identified targets. Large
programs with many function pointers have more identified
targets, which results in a greater maximum encoding range.
For programs written with Object-Oriented Languages, in
which indirect invocations are more common, this problem
would become more serious. In existing context encoding
methods [18] to reduce the runtime overhead incurred by
indirect calls, profiling runs are used to identify the likely
targets. This adds extra burden on users or application
developers.

In many real programs, such as the Apache web server and
Firefox, some libraries (software plugins) are dynamically
loaded. The functions in these libraries are usually invoked
via function pointers. The targets of these function pointers
are determined at runtime, so they cannot be identified even
with points-to analysis. Because the mapping address of
libraries may vary across runs, profiling runs may not work
well either. Therefore, we should have a more robust method
that can encode the call paths that contain indirect calls

dynamically instead of relying on pure static analysis with
profiling.

Issue 2: Dynamic loading and call paths within shared
libraries.

For function calls to shared libraries, we do not know the
real targets of function calls to shared libraries before link
time. Because the mapping address of a library varies across
runs, we cannot use profiling runs or source code analysis to
get the real targets either. Therefore, a dynamic encoding
mechanism is needed to encode the function calls via PLT
(Procedure Lookup Table). Though the existing method
can be extended to encode PLT calls by annotating and
encoding the call graph post link time, it will add a large
number of library functions in the call graph. Because some
library functions (for example, fprintf) are likely to be called
from many different call sites, the required encoding space
will increase dramatically and result in insufficient encoding
space that may exceed the 32 bit integer range. Therefore,
a more efficient encoding method is needed to handle the
function calls to shared libraries.

Issue 3: Efficient in encoding space and time.

At runtime, only a fraction of call paths will be actually
executed. However, static encoding methods will encode all
paths in the call graph/control flow graph, this may incur
extra overhead and cause insufficient encoding space. To
avoid this problem, we need an encoding method which can
only encode the call paths actually invoked during execution.

The calling context recording method is usually used in
debugging, event logging or analyzing tools. In data race
detectors or event logging tools, the correct run must be
reasonably fast. Therefore, the overhead of obtaining the
runtime calling context should be kept low. To reduce the
runtime overhead, existing methods usually use profiling
runs to identify the hot and cold call edges. For pro-
grams with different execution behavior with varying input
datasets or different interferences among threads, static
profiling of hot call paths may be inaccurate. These tools
may record a large number of context-sensitive events online
since they do not know which ones might be relevant for
error reporting. To reduce the log file growth, the context
sensitivity information must be compressed. Therefore, we
would like to build an adaptive method, which requires less
work from users and can adjust the encodings according to
program’s execution behavior.

Issue 4: Avoid interfering with the compilation/optimization

of client programs.

To compute the encodings of calling paths at runtime,
we need to instrument the client program. Source instru-
mentation may interfere with compiler optimizations such
as inlining and tail call elimination. This will cause the exe-
cution behaviors of the instrumented program to be different
from real runs. Moreover, it is difficult to obtain the source
code of commercial application software. For dynamically
linked programs, it is also very difficult to encode the call
edges in libraries using source instrumentation. Therefore,
we should consider taking other approaches to compute the
calling contexts such as dynamic binary instrumentation.

Issue 5: Multi-threaded programs.

For multi-threaded programs, there are several new en-
coding issues. As discussed in [18], since all functions may
operate on the context identifier id, it is declared as a global
variable. However, in multi-threaded programs, each thread
should have independent calling contexts at runtime. If
the context identifier is still globally shared, all threads will
operate on the same id. In this case, the context encodings
of all threads are added to the same context identifier, and it
generates a meaningless or misleading encoded path value.
Therefore, each thread should operate on private context
identifiers at runtime. A straightforward method is to create
a global variable (used as context identifier) for each thread.
In this way, the encoding process of all threads would not
affect each other. However, to do this, we need to generate
separate instrumentation code for each thread. This could
lead to code bloat, synchronization errors and other issues.

2.3 Key Challenges

In this paper, we aimed to dynamic and adaptive calling
context encoding algorithm. It can dynamically encode all
function calls invoked at runtime and adjust the encodings
according to program’s execution behavior. Its overhead
is low and its captured calling context is precise. Such an
algorithm has two main challenges:

How to handle newly identified call edges?.

Existing encoding algorithms only work on complete call
graph. To encode newly identified call edges at runtime, a
new encoding algorithm is needed.

How to ensure the collect path ids be correctly de-
coded?.

As discussed above, to reduce the time and space overhead
incurred by context profiling, we need to adjust the en-
codings according to application’s runtime behavior. After
adaptive encoding, the encodings of call edges may change,
so the decoding algorithm should ensure that the collected
path ids can be correctly decoded.

3. DYNAMIC ENCODING METHOD

DACCE encodes the function call edges invoked at run-
time. It starts with a call graph containing only function
main”. Initially, only the entry function “main” is in-
strumented and all function calls (including indirect calls,
tail calls, PLT calls, and normal calls) are replaced with
instrumentations to invoke a runtime handler. When a
function call is called for the first time, the runtime handler
will be invoked to take care of a) adding the current call edge
to the call graph, and b) inserting code to save and restore
the context encodings before and after the instruction call.
Function calls inside the target function of the current call
are also replaced with "call to RuntimeH andler”. Call edges
are added to the call graph after their first invocation, so the
call graph expands as the program runs, and only the call
edges that are invoked in the current execution are encoded.

The newly invoked call edges are not encoded immedi-
ately. Only when the newly added edges exceed a threshold
or the frequently executed call paths are not encoded, the
whole call graph is re-encoded. The reason not to encode
newly called edges is to minimize encoding time, which is
part of the runtime. We perform re-encoding only when
sufficient information is gathered. This follows the principle

ccStack.push(<id,callsite,

I target>);
I @ id = maxID+1; @

call target; +1

@ id = ccStack.pop(); @

(a) Call graph in which edge

AD is not encoded (b) Instrumentations ~ (c) After re-encoding

Figure 2: Encoding Normal Calls

of dynamic optimization. The complete call path may
be divided into sub-paths by the unencoded call edges at
runtime. Similar to the way PCCE handles recursive and
indirect calls, we use a stack to save the encoding context
before invoking unencoded call edges (in this paper, we call
the stack ccStack). For call paths containing unencoded call
edges, the context encoding is composed of current context
id and the content on ccStack.

Since the context encodings of sub-paths are saved in
ccStack, we must find a way to indicate whether the context
encoding on the top of ccStack should be popped or not at
each round of decoding process. For example, in Figure 2(a),
edge AD is not encoded. Assume the current function
is D, the current id=0, and the ccStack has an entry
< 0,A,D >'. This context encodings can be decoded into
AD or ACD. While decoding, we need a method to decide
which edge (AD or CD) was taken. In [18], to correctly
decode the call paths contain recursive or indirect calls, it
uses dummy edges to indicate whether there are context
encodings of sub-paths saved on ccStack. However, it needs
a complete call graph before encoding, which is not available
with our dynamic encoding approach.

We can see that there is a maximum encoding value (we
call it maxID for short) after the call graph is encoded.
Though the call graph is incomplete in our dynamic encod-
ing approach, the maxzID is always the maximum possible
encoding value at runtime. That is, the possible encoding
value at runtime is within the range [0, mazID]. There-
fore, we can use the numbers in the range of [mazID+1,
2*maxzID+1] to indicate if there is an unencoded call edge
in current sub-path.

As discussed above, the unencoded call edges would divide
the complete path into several sub-paths. The head function
of a sub-path must be the target of an unencoded call.
In such case, we can set the context id to maxID+1 and
save encoding context (including current callsite and context
id) before invoking an unencoded call edge. If the sub-
path is acyclic, each function would appear at most once
in it. Therefore, the target function of the saved callsite
is the head function of current sub-path. In this way,
the unencoded call edges can be correctly identified. More
details are introduced in the following sections. In summary,
this novel encoding approach is to effectively deal with
incomplete call graphs that the dynamic encoding approach
must handle.

The callsite in the tuple should be the address of the
CALL instruction. For simplicity, we use the name of caller
function to indicate the callsite in the examples.

3.1 Normal Function Calls

Algorithm 1 Decode a calling context

Input:
id: the encoding id
ifun: the function at which the encoding was emitted
ccStack: the content on ccStack when the encoding was
emitted

Function AdjustID()

1: if id > mazxzID then

2: id < id - (maxID+1)

3: onstack < true

4: end if

Function Decode(id, ifun, ccStack)

5: onStack + false

6: AdjustID()

7: cc + <ifun,->

8: while true do

9: while id = 0 and onstack=true do

10: <id’,cs’,target’> < ccStack.top()

11: if ifun=target’ then

12: onstack <+ false

13: e=<p,n,cs> <+ getEdge(cs’,ifun)

14: if e is a back edge then

15: <id, cs, target, count> < ccStack.pop()
16: else

17: <id, cs, target> < ccStack.pop()
18: end if

19: ifun < p

20: cc <ifun, cs, target, (count)> e cc
21: AdjustID()

22: else

23: break

24: end if

25: end while
26: for each e=<p,ifun,cs> € E do

27: if En(e) < id < En(e)4+numCC(p) then
28: ifun « p

29: cc + <ifun, cs> e cc

30: id - id - En(e)

31: break

32: end if

33: end for

34: if CcStack.empty() and e=null and id=0 then
35: break

36: end if

37: end while

38: print cc

For normal calls, the runtime handler is invoked at their
first invocation. Initially, all functions calls are patched with
invocations to the runtime handler. The invoked edge is
added in the call graph, but that edge is not encoded until
the next re-encoding process. After that, instrumentation
code are generated and patched. At the end of the runtime
handler, the control will return to the newly generated code,
and the call instruction will be executed.

As discussed above, sub-paths that contain unencoded
call edge should be encoded by the numbers in the range
of [maxID+1, 2*maxzID+1]. While decoding, if encoding
id is in the range [maxID+1, 2*maxID+1], it indicates
that current sub-path is separated by an unencoded call
edge. As depicted in Figure 2(b), after instrumentation,
the current context id, the callsite and the target (i.e. <
id, callsite, target > in the figure) are pushed onto ccStack
before function call, and id is set to maxID+1. After the
target function returns, id is restored to its previous value.
In the example shown in Figure 2(a), since the context id is
set to maxID+1 before the function call, the call path after

target>);

id = maxID+1;

call runtimeHandler;
call *indirectAddr;
id = ccStack.pop();

(a) Original call graph.
C contains indirect call.

(b) Instrumentations

ccStack.push(<id,callsite,

target = *indirectAddr;

if(target==E) {
id = id + codingcg;
call E
id = id - codingcg;
}
else {
ccStack.push(<idcallsite,
target>);
id = maxID+1;

call runtimeHandler;
call *indirectAddr;
id = ccStack.pop();
(c) Encodings after }

re-encoding (d) Instrumentations

Figure 3: Encoding Indirect Calls

function D would be encoded to a number within [mazID+1,
2*maxID+1]. Besides, the encoding context before invoking
function D is also saved.

Consider the example context AD. When A invokes D,
the id, callsite and index of function D (the entry address or
a unique index of a function) are pushed onto ccStack. After
id value is pushed, it is set to 1 (in the example call graph,
mazxID=0, so maxID+1=1). As a result, it is encoded as a
sub-path A with id=0 on the ccStack and the encoding of
current sub-path D is 1.

If there is more than one unencoded call in the call path,
the encodings before all unencoded calls will be saved on
ccStack. Therefore, any level of unencoded calls can be
handled. For example, suppose the full call path is A- -
>B->C- ->D, in which edge AB and C'D are unencoded
call edges. Because AB and CD are un-encoded, the full
path ABCD is now divided into sub-path A, path BC and
sub-path D. When the edge AB is invoked, the encodings
of sub-path A will be pushed on ccStack, and id is set to
mazID+1. While edge C'D is invoked, the encodings of sub-
path BC would also be pushed on ccStack. Therefore, the
full path is encoded with id = maxzID+1, and with tuples
<0,A,B>, < maxID+1,C,D> on ccStack.

The decoding algorithm is presented in Algorithm 1. Tt
takes the context id, function index, and content of ccStack
as part of its inputs. In the algorithm, ccStack.top() is the
top entry of ccStack. On ccStack, each entry has three or
four elements, which is the context id, the callsite, the index
of target function (target), and the number of repetitive
recursions (count). At line 13, function getEdge(cs’,ifun)
returns the edge which is at callsite cs’ and ends with ifun.
If such edge does not exist, it returns NULL. For edge e =<
p,n,cs >, p is the caller, n is the target function and cs
indicates the callsite.

Intuitively, it decodes one acyclic sub-path at a time,
until all encodings saved on ccStack are decoded. In the
algorithm, lines 9-25 handle unencoded call edges. An
acyclic sub-path is decoded by lines 26-33. We use a flag
(onstack) to indicate if there is an unencoded call edge in
a sub-path. In the decoding process, if the current sub-
path encoding is greater than mazID, we will adjust the id
and set the onstack flag (as shown in lines 1-4). Since the
unencoded call edges divide the complete path into acyclic
sub-paths, each function would appear at most once in a
sub-path and the head function of a sub-path must be the
target of the saved callsite. Therefore, we first try to match

the decoded context with the call edge on the top of ccStack
in each round of decoding process (as shown in lines 9-11).

Consider an example of decoding a context. For the call
graph in Figure 2, assume the current function is D, the
current id = 1, and ccStack has an entry < 0, A, D >. Since
id is greater than mazID=0, the value of id is adjusted and
the onstack flag is set. Then, the entry in ccStack is popped
since i fun = target’, and function A becomes the starting
point. After this, the ccStack is empty and id = 0, so
the decoding process terminates, and calling context AD is
decoded.

3.2 Indirect Calls

As discussed above, DACCE does not need points-to
analysis or profiling runs to identify the targets of indirect
calls since the targets of indirect calls will be identified at
runtime. DACCE handles indirect calls in a similar way to
normal calls. Initially, the indirect calls are also replaced
with instructions that invoke the runtime handler. After
their first invocation, the indirect calls are also patched.
The instrumented code after their first invocation is shown
in Figure 3(b). As shown in the figure, before the indirect
invocation, the current context id, the callsite and the target
(i.e. < id,callsite,target > in the figure) are pushed onto
ccStack, and id is set to maxID+1. After the target function
returns, id is restored to its previous value. To identify
the targets of indirect calls, the runtime handler is invoked
before each indirect invocation. In the runtime handler, the
target function node and the corresponding call edge are
added to the call graph.

Consider the example context ACFEI. When C invokes F
by an indirect call, the id, callsite and index of function FE
are pushed onto ccStack. After id value is pushed, it is set to
5 (in the example call graph, mazID=4, so mazID+1=5).
As a result, taking the remaining path EI leads to id=7.
Therefore, the final encoding result is ¢d=7, and the ccStack
has an entry < 0,C, E >.

This context encoding can be decoded by Algorithm 1.
Since the id is greater than maxID, the id will be adjusted
and the onstack flag will be set. After the first iteration
of the outer loop, the sub-path ET is decoded. In the next
iteration, since id = 0,onstack = true and ifun = target’,
the entry in ccStack is popped and function C' becomes the
starting point. After this round, the value 0 on ccStack is
decoded to the sub-path AC. The two sub-paths constitute
the full calling context ACEI.

Target 5
Addrl Coding] target = *indirectAddr;
0 0 ihash = hash(target);
If(hash_table[ihash].target==target)
ch‘r s Coding2 || {
arge T id += hash_table[ihash]._coding;
Addr : call *indirectAddr;

id -= hash_table[ihash]._coding;

t N
. bt

ANV ccStack.push(<id,callsite, target>);
equal? id = maxID+1;
£ : call runtimeHandler;
quat . call *indirectAddr;
comgf.'he coding to id. id = ccStack.pop():
Call the runtime handler.

Figure 4: Instrument the indirect calls

After re-encoding, the identified targets of indirect calls
are encoded separately (as depicted in Figure 3(d)). This
instrumentation method is effective with a small number of
indirect targets. If an indirect call has a large number of
targets, it will probably incur many extra comparisons for
each invocation. We have observed such cases in several
benchmarks, such as 400.perlbench, 445.gobmk, and so on.
To avoid the overhead incurred by extra comparisons, a
new instrumentation method was developed (as shown in
Figure 4).While instrumenting an indirect call, if the number
of identified targets exceeds a threshold, the identified target
addresses and corresponding coding of the indirect call edges
will be saved in a hash table. At runtime, the instrumented
code will first calculate the hash value by the target address
of current invocation. Then the value saved in the hash
table is compared with the current target address. If they
are equal, the coding saved in hash table are added to the
current id; if not, the encodings are saved in ccStack and
runtime handler is invoked.

DACCE identifies invocation targets dynamically, so it
avoids many false positive targets affecting the encodings.
Compared with PCCE, our method has less instrumentation
and requires a smaller encoding space. Once again, this
method does not need any program analysis or profiling runs
to deal with indirect call targets.

3.3 Recursive Calls

Figure 5(a) gives an example call graph which contains
one recursive call. Since we do not know whether the call
edge is a recursive call, the recursive call is treated as a
normal call at its first invocation.

Consider the context ADACDAD. It is encoded as
id = 1 and 4 entries (<0,A,D>, <1,D,A>, <1,D,A> and
<1,A,D>) on ccStack. Since the current id is greater than
mazlD, so the id will be adjusted and the onstack flag will
be set. After that, we can get id = 0. Next, sub-paths AD
and DA will be decoded by lines 9-25 of the algorithm, and
sub-path ACD will be decoded by lines 26-33. In the next
iteration, sub-paths DA and AD are decoded. Eventually,
we obtain the calling context ADACDAD.

As discussed in section 3, to correctly decode the full call
path, we should ensure that each sub-path is an acyclic path.
That is, the full call path should be divided into several
sub-paths by unencoded and recursive calls. Therefore, the
recursive calls will not be encoded while re-encoding the call
graph.

For highly repetitive recursive calls, the ccStack could
grow very fast. This will incur runtime overhead, as well as

last id ccStack

e called (id,cs,target)
4 -
/ ccStack.push(<id,cs, g 10 OADI
I | farget>); A 0 (0,A,D)[(1,D,A)
' ' id = maxID+1;
\ | ! C 1 (0,A,D)|(1,D,A)
\ call target; D 1 OAD)(LDA)
\ Q id = ccStack.pop().id; A p T0,AD)[(1,0,A)
...... [(1D,,A)
10,A,D)[(L,D,A)
D | '] jdo.aiiAn)

(a) Call graph in which edge (b) Instrumentations on .
AD and DA is not encoded edge AD and DA (c) Context Encodings

ccStack

if(<i == last B
if(<id,cs>==ccStack.top()) { oy id s tovgancoun]
ccStack.top().count ++; N)
, e id = maxID + 1;
/ call A; C 0
| id = ccStack.top().id; D 1 -
| G ccStack.top().count --; A 2 (1,0,A,0)
\ }else { D 2 (1,0,A,0)
\ +1 ccStack.push(<id,cs,target,0>);| A 2 (1,0,A,0)|(2,D,A,0)
\ Q id = maxID+1; 5) > iAo 2oA0
call A; N >
id = ccStack.pop().id; (1LOAO)I2DAL
D 2 | (LDA0)I(2DA1)

(e) Instrumentations on

(d) After re-encoding edge DA

(f) Context Encodings

Figure 5: Encoding recursive calls

space overhead for storing the collected calling contexts. In
DACCE, we compress the repetitive paths in ccStack with a
counter which records the number of repetitions. As shown
in Figure 5(e), while encountering a recursive call at runtime,
the value of id and callsite in the top entry of ccStack are
compared with current id and callsite. If they are equal,
the code to increment the counter (ccStack.top().count++)
will be executed; otherwise, the code to push the current id
and callsite onto ccStack will be executed. In both cases,
the id will be set to maxID+1 before the recursive call.

4. ADAPTIVE ENCODING METHOD

To further reduce the runtime overhead of DACCE, we
propose an adaptive encoding method, which adjusts the
encodings according to collected calling contexts. At run-
time, some of the collected contexts will be decoded to
extract runtime information. The re-encoding process will
be initiated when the following cases are detected.

e The number of identified call edges reaches a threshold.
e The frequently invoked call paths have changed.
e The ccStack is frequently accessed.

For multi-threaded programs, we should first stop the
execution of all threads. In our system, we register a signal
handler for all threads in the process to suspend the threads
at runtime. After the program is suspended, the collected
contexts are analyzed and the call graph re-encoded. In the
adaptive encoding procedure, the following actions will be
taken:

¢ Decode the collected contexts, mark the frequently
invoked call edges.

o Encode the whole call graph, and adjust the encodings
according to the invocation frequency. The most
frequently invoked edge will be encoded with 0. The
edges encoded with 0 do not need instrumentation, the
runtime overhead will be reduced.

. .
-§ 2 ‘ Edge._encoding[0] ‘ _§ ; ‘ Edge._encoding[1] ‘
88 f ¥ — R
| Node._numcc[0] | | Node._numCc[1] |
— — TimeStamp=0 — |- — - TimeStamp=1 — — —| -
id1 [id2 [id3 | id4 | id5 [id6 [id7 [id8 | id9 |id10 |

Figure 6: Decoding mechanism with re-encoding

¢ Analyze the contents on ccStack of collected contexts.
If they are highly repetitive, adjust the encoding
algorithm on recursive calls to compress the saved
contexts on ccStack.

¢ Instrument the program with the new encodings.

After instrumentation, the current id and entries on
ccStack are regenerated according to the new encodings.
The return address of all active functions on the stack should
be modified to corresponding addresses in newly generated
instrumentation. After the adaptive encoding process, all
threads will be resumed, and the program will continue
executing.

4.1 Decoding mechanism with re-encoding

With adaptive encoding method, the call graph is growing
dynamically as the program runs. To correctly decode
a recorded context, we need the exact call graph and
the encoding information when the context is recorded.
Therefore, we use a global timestamp (gTimeStamp) to
tag the collected contexts. After each re-encoding process,
gTimeStamp will be incremented by 1 to indicate the
call graph has been changed. Figure 6 illustrates the
decoding mechanism. All collected contexts are tagged with
gTimeStamp. In our system, the information that is needed
when decoding a context id is store in Edge and Node
structures respectively. Edge._encoding is the encodings of
an edge, and Node._.numCC' is the number of contexts of
a function. maxID,, is the maximum path encoding value
for the call graph when gTimeStamp is n. These three
elements constitute a decoding dictionary. While decoding,
we will use gTimeStamp to select the respective decoding
dictionary.

5. IMPLEMENTATION ISSUES

5.1 Function calls to shared libraries

For function calls via PLT (we call them PLT calls in
this paper), we can encode these call edges at runtime after
all needed libraries have been loaded. Since some library
functions (for example, fprintf) are likely to be called from
many different call sites, the maximum number of contexts
could exceed the allowable encoding range.

In our work, the way to handle PLT calls is similar to
normal calls. The PLT call edges are added in the call
graph only as needed at runtime. Initially, all PLT calls
are patched with invocations to the runtime handler. In
the handler, we first get the real target address of the PLT
call. The edge between the callsite and the real target is
added to the call graph, but that edge is not encoded until
the next re-encoding process. After that, code to save and

TeStack.push(id /pCcStack);
id += coding;

call C

id /pCcStack=TcStack.pop!();

| id += coding; or cStack.push(<id,cs,D>);
i Jmp D

(b) Handle Tail Call

(a) Problems caused by tail call

Figure 7: Handling tail calls

restore the encoding context (as shown in Figure 2(b)) are
generated and patched.

5.2 Tail Calls

In compilers, tail call elimination is a common optimiza-
tion. To compute the encodings, instructions are inserted
before and after function calls. If the encoding algorithm
is implemented on source level, tail call optimizations of
compiler will not take place. Therefore, in several existing
related works, such as PCCE [18], there are no tail calls in
the selected test programs.

In Figure 7(a), CD is a tail call. Assume the invocation
order is ACDFABDF. Because function D will return
directly to function A instead of C, the instrumented code
7id-=1" will not execute. After ACDF is returned, the
encoding value in A is 1. This will lead to incorrect
encodings for subsequent call paths. For example, path
ABDF would be encoded as 1 while the correct encoding
should be 0.

Our solution is presented in Figure 7(b). Analyzing the
context encoding method, we can observe that the encoding
context is identical before and after an invocation. For tail
call edges that cannot be encoded with 0, we store and
restore the encoding context in the caller of the function
which contains a tail call. We use another helper stack (we
call it T'cStack in this paper) to save encoding values before
a tail call. Unlike ccStack, the content in TcStack is not
required for decoding the contexts, so it will not increase the
overhead while recording the calling contexts. As illustrated
in Figure 7(b) (in the example, edge CD is a tail call),
instructions to store and restore the encoding context before
tail call are instrumented on edge AC.

Like normal calls, tail calls are added to the call graph
after their first invocations. In the runtime handler, we mod-
ify the instrumented code of current function’s caller and
update the T'cStack. Before re-encoding, the instrumented
code of tail calls would be ”ccStack.push(<id,cs,target>)".
In this case, the address of ccStack’s top entry would be also
stored in T'cStack.

To handle tail calls via indirect branches, all indirect
branches are also instrumented to get the branch targets.
If the target of an indirect branch is out of current function,
that indirect edge will be treated as tail call.

5.3 Encoding Multi-threaded Program

To correctly encode a multi-threaded program, we utilize
thread local storage (TLS) to compute the context identifier
at runtime. TLS allocates variables so that there is
one instance of the variable per extant thread. TLS is
supported by most architectures, such as TA-32, X86-64, IA-

64, SPARC, Alpha etc. For example, on X86-64, the thread-
local variable can be accessed by %gs:tlsoffset (for 32-bit
program) or %fs:tlsoffset (for 64-bit program). In this way,
we can only instrument one copy of code, and guarantee that
each thread operates on its own context id independently.

The ccStack used to encode the recursive path and
indirect invocation path should also be allocated within
the TLS section. However, the required size of ccStack
may vary widely for different threads. To reduce the space
overhead, ccStack should be created sparingly. Initially,
we don’t allocate memory for ccStack (the pointer variable
which points to the ccStack should be within TLS section).
Therefore, if ccStack is accessed for the first time, an access
violation trap will be raised. In the trap handler, we allocate
memory space for ccStack. Furthermore, the bottom of
ccStack is protected to detect stack overflow.

To recover the full calling contexts of multi-threaded
program, we collect thread creation and work migration
information at runtime. For Pthreads programs, we will
intercept function clone and record the thread creation
information at runtime. While decoding the contexts, the
sub-path to create the current thread is also decoded.

6. EVALUATION

6.1 Experimental framework

We implemented DACCE as a shared library (dacce.so)
on Linux. We use the environment variable LD_PRELOAD
to intercept the _libc_start_main routine (within which the
main function is called). In the intercepted routine, a call
graph that contains only function ”"main” is constructed,
and the function “main” is instrumented to capture all
function calls invoked in "main” at runtime. After that, the
real __libc_start_main routine is invoked and the execution
starts.

To verify the correctness and effectiveness of DACCE, we
implement a sample module with libpfm4 [9] in our system.
Libpfm4 is a helper library for the performance monitoring
events provided by the hardware or the OS kernel. In our
system, we periodically sample the program and record the
context identifiers at the sample points. We also capture the
calling contexts with a stack-walking method. The calling
contexts obtained by the two methods are cross validated
after program ends.

To compare with PCCE [18], we also simulate PCCE in
our system. We first use Pin [13] to profile the targets
of indirect calls and the invocation frequency of all edges
with the same input as in real runs to give PCCE a full
potential of profiling. In real runs, we will first add indirect
edges in the call graph and adjust the encoding of call edges
according to the profiled data.

6.2 Platform and benchmarks

All experiments are performed on a 2-way Intel Xeon
server, and each processor is a 1.87GHz Intel Xeon ET7-
4807. The SPEC CPU2006 and Parsec 2.1 [4] are used as
the benchmarks to evaluate DACCE. The SPEC CPU2006
benchmarks were compiled by the Intel C++ Compiler
11.0, and the "-ipo -O3 -no-prec-div -xSSE4.2” compiler
optimization option is used. For Parsec 2.1, the gcc-pthreads
version of the precompiled binary distributions is used. In
the experiments, SPEC CPU2006 benchmark suite uses the
ref input set, and Parsec 2.1 benchmark suite uses the

native input set.

6.3 Characteristics of benchmarks

Table 1 presents the characteristics of the benchmarks
used to evaluate DACCE. For each program, the table lists
the number of nodes (Nodes) and edges (Edges) in the call
graph, the maximum ID (i.e. context identifier) required in
the call graph (MaxID), the frequency of ccStack operations
(ccStack/s), and the average depth of ccStack (depth) for
both PCCE and DACCE. Column "gTS” (abbreviation of
gTimeStamp) and “costs” list the number of times that the
re-encoding process is triggered and the time cost in re-
encoding processes respectively. The last column "calls/s”
shows the invocation frequency of function calls at runtime.

We can observe that the ccStack are frequently accessed
(due to recursive calls and indirect calls) in some programs,
such as 400.perlbench, 483.xalancbmk, and 453.povray. In
our system, we use a 64bit context identifier. For PCCE;,
there are still several benchmarks which could not be
encoded within a 64-bit ID like 400.perlbench and 403.gcc.
To fit the maxID of these programs into 64-bits, some edges
that are never invoked in real runs (according to the profiled
data) are deleted. As the data shows, the required encoding
space is significantly reduced with DACCE since only the
contexts that are invoked at runtime are encoded.

For most benchmarks, the average depth of ccStack is
0. This means that the call path can be encoded into one
ID without using the ccStack most of the time. However,
445.gobmk and 483.Xalancbmk have several recursive invo-
cations occurring on the frequently executed path, so the
ccStack has a nontrivial depth.

6.4 Experimental Results of DACCE

The runtime overhead of PCCE and DACCE is shown
in Figure 8. As the data shows, for most benchmarks,
the runtime overhead of PCCE and DACCE are compara-
ble. However, for 400.perlbench, 483.xalancbmk and x264,
PCCE incurs higher overhead than DACCE even when
profiled with the same input sets as in real runs. We can
observe from Table 1 that the ccStack is more frequently
accessed with PCCE for 400.perlbench and 483.xalancbmk.
This is because edges that are never invoked in real runs
may still cause some edges to be identified as back edges in
a complete call graph. In DACCE, only the edges invoked
at runtime are added in call graph, so the cold edges will
not affect the encodings of hot edges. For x264, the reason
is that several frequently invoked indirect calls have a large
number of targets. In section 3.2, we have discussed that if
an indirect call has a large number of targets, it may incur
many extra comparisons for each invocation. In DACCE,
an instrumentation method was developed to cope with this
issue (as introduced in section 3.2).

For some benchmarks, such as 458.sjeng, 433.milc and
434.zeusmp, the overhead of DACCE is slightly higher than
PCCE. As illustrated in section 6.1, PCCE depends on
static profiling to drive encoding. For these benchmarks, the
profiles used are very representative. DACCE uses dynamic
profiling which incurs some runtime overhead. Therefore,
for benchmarks whose offline profiling is representative, the
advantage of using dynamic profiling diminishes. However,
even in such cases, the runtime overhead incurred in of
DACCE is still relatively low.

As shown in the figures, the average runtime overhead

Table 1: Characteristics of SPEC CPU2006 and Parsec 2.1

PCCE DACCE lls/
Nodes | Edges MaxID | ccStack/s | depth | Nodes | Edges MaxID | ccStack/s | depth | gTS | costs(us) cals/s
400.perlbench 1468 | 21065 | overflow | 4969345 0.20 684 | 3911 | 1.4E+11 | 3095100 0.20 23 | 1747514 | 29205101
401.bzip2 122 321 833 0 0.00 50 109 61 38753 0.05 5 3475 7687097
403.gcc 3944 | 50690 overflow 0 2.94 1931 11518 | 7.0E+13 315406 0.00 110 2866850 | 14710894
429.mcf 69 126 53 0 0.00 11 12 3 2069 0.01 2 166 295581
445.gobmk 2273 | 13687 | 3.4E+15 246782 2.42 1378 4808 | 2.4E+11 250321 2.47 76 1732161 | 13355556
456.hmmer 249 1618 56401 3082 0.00 70 174 42 481 0.02 2 1420 1872530
458.sjeng 139 678 33088 0 0.00 54 232 2945 233 0.00 23 19560 | 18248384
462.libquantum 118 846 | 1202640 0 0.00 29 49 15 1 0.01 9 722 44
464.h264ref 398 2698 | 1.8E+07 424979 0.00 201 1048 34293 5310 0.00 10 84556 7080183
471.omnetpp 1706 | 11981 | 1.2E+407 302097 0.11 506 4135 8654 149146 0.04 11 205585 | 11656043
473.astar 139 469 3177 0 0.00 60 140 101 10606 0.03 10 1922 129559
483.xalancbmk 12535 | 40392 | 3.8E+14 | 4375862 6.91 2170 7321 1422838 596197 6.01 27 3551342 | 25341805
410.bwaves 369 2189 7248401 0 0.00 82 164 73 2639 0.01 6 433 263845
416.gamess 2442 | 50080 | 1.1E+415 0 0.00 362 2017 112645 21925 0.03 19 41810 3390329
433.milc 177 667 5761 0 0.00 57 185 455 46156 0.09 38 524072 380448
434.zeusmp 416 3598 | 2.9E+08 0 0.00 118 528 5026 485 0.05 81 9640 1601
435.gromacs 619 2919 351721 0 0.00 154 402 1553 5132 0.01 8 4742 919287
436.cactus 876 6394 8552489 0 0.00 271 1533 119729 3003 0.01 3 16197 4662
437.1eslie3d 434 3247 | 6.0E+07 0 0.00 106 597 388 475 0.00 2 880 85206
444.namd 176 482 361 0 0.00 61 101 31 19426 0.02 20 4260 737925
447 .dealll 9935 | 30204 254161 280 0.12 792 3369 1132 16331 0.06 47 30871 | 19533456
450.soplex 784 1954 96457 2590 0.00 225 453 367 32681 0.07 7 8706 312430
453.povray 1644 | 12056 | 8.7E+16 270387 0.84 548 2201 548645 69109 0.76 6 113456 | 34335309
454.calculix 1009 8307 | 1.0E+09 0 0.00 416 1660 3043 62812 0.06 11 13485 3662033
459.GemsFD 517 5076 | 5.1E408 0 0.00 175 2067 10756 32749 0.01 7 7690 1579372
465.tonto 2144 | 34717 | 4.3E+14 0 0.33 657 4548 134983 26186 0.03 101 154889 9545304
470.lbm 75 135 53 0 0.00 13 16 4 0 0.00 3 222 2964
481.wrf 1367 | 17330 | 4.5E+12 0 0.00 660 5483 713767 20138 0.03 4 63147 2358117
482.sphinx3 273 1570 27121 0 0.00 134 404 92 4187 0.00 6 1825 1875791
blackscholes 12 26 4 0 0.00 3 5 5 68 0.00 11 644 | 14646244
bodytrack 1310 | 11047 151775 0 0.00 218 894 667 68268 0.01 5 12204 6928160
facesim 6213 | 24377 | 1.8E+10 0 0.00 264 1102 1104 24132 0.00 5 11029 8891290
ferret 1987 | 25270 | 7.9E+14 0 0.00 354 1612 3398 44682 0.00 4 8972 4439120
raytrace 7911 | 24577 | 6.8E408 0 0.02 177 632 235 370 0.06 5 5631 3516574
swaptions 2173 6372 | 2.6E+08 0 0.00 15 136 51 3 0.03 12 45821 | 21753118
fluidanimate 2168 6420 | 2.8E+08 0 0.00 73 144 31 49 0.00 8 23648 76287
vips 5395 | 256302 | 7.7E+11 0 0.00 482 1555 26117 3865 0.00 5 3271 855060
x264 820 3299 1079001 0 0.00 221 1052 2017 15729 0.00 4 84911 | 23984355
canneal 2191 6733 | 3.4E+08 0 0.00 107 225 44 380 0.00 6 105133 2276649
dedup 121 256 65 0 0.00 21 30 5 30239 0.00 4 7201 1305985
streamcluster 2182 6336 | 2.6E408 0 0.00 11 29 15 14 0.00 6 156324 111153
20% T
5% | O PCCE
E 16% | B DACCE
£ 14% 1
Y 12%
O 10% m
£ 8%
£ 6%
2 4%
2%
0% -+
NSRRI AR R R R R R R s R R R A R R R R R R R AR S
SEpofERES s n2Eg 383055, 0E 8L XEREE
2 DES SO ENEEHMNE eS8 SR Ia0 AR ORI RET FRE §° 9o
g < NS PTIIVEos s RO RNITRNLS S 8% 8 Sz 8 £ o
S T =EQYR OZTFTYT QPouv TYFY RO 2 v
e} ~N < m ¥ o Q ° - s
<) < m Al »n
< < <
Figure 8: The runtime overhead for SPEC CPU2006 benchmarks and Parsec2.1

5000 3.E+11 250 4.E+03
" e a
9 4500 —— a -/ N, ---0 a
=T T i PR] oo n-= L
-mm-m- < 3.E+03 2
2 4000 5 T FaEm ¥ 2 200 . _——X £
= -
B 3500 | il € Y ¥ - & =Nodes | 3.E+03 E
2 » / - ¢ - Nodes c S 2 S
000 -~ 2.E+11 =agg=s
33 _.‘ X -~ Edges Tow g™ W=Edges | 2Fi03 W
T 2500 8 ° 5
] j % —¥— MaxID S] ¥—MaxiD | 5 E03 $
$ 2000 1B+ § $ 100 -E+03 S
S 1500 } £ K 1E+03 §
] — - -———- H 5 [2
2 1000 {-:M O 90=00 0= sEr0 £ R e e === == =0 £
E 5 E L 5.E+02 &
2 500 = 3 H
[T T T 0.E+00 o T T T T 0.E+00
0 3000 6000 9000 12000 o 5000 10000 15000 20000 25000
445.gobmk Time / 0.01s 458.sjeng Time / 0.01s
200 5.E+02 8000 1.E+07
@ "
@ 180 5.E402 g a
L R [=] xp 7000 L =2
3 160 !--I- 4E+02 % E '. -------- -4 -a 1.E+07 z
M L — ¢ —Nodes * g ¢ 6000 rd 9
E’ 1o .---—-: --B8--Edges / Evo2 § -?:’ 5000 / T o mNodes | gvos §
3 T g® S LETEE Seha-a -y ~-8--Edges g
g 100 1 3.E+02 3 B 4000 6.E+06 b
£ 5o I Labor £ | B XM Z
@ H . Py 8 3000 Erog I
S 60 2E+02 E S [AERS g
5 ldo-- -0 ---——--- $°9 Z 5 2000 gy == === o 2
8 40 1.E+02 £ 2 £
£ i & X £ 1000 an’ r 2.E+06 %
2 20 5.E+01 = E Mt X g
[T T T T 0.E+00 0 T T T 0.E+00
0 3000 6000 9000 12000 15000 10000 20000 30000 40000 50000
433.milc Time / 0.01s 483.xalancbmk Time / 0.01s
Figure 9: The progress of encodings with DACCE method
is about 2.5% and 2% for PCCE and DACCE respectively. oo 445.gobmk oo 483-xalancbmk
There are several benchmarks which have a relatively higher 8o
80% °
overhead. Compared to Table 1, we can see that the o
. . . . o 0%]
programs which suffer significant performance degradation 60% —a—Call stack
. . 40%
are exactly the programs which have high frequency of 40% T e .
. . : . . ! 20
function call invocations and ccStack operations. That is, Sox encoding
the overhead of PCCE and DACCE are closely related to . " NI TR T
. . . - R RY83SE
the invocation frequency of function calls, especially the 0 4 8 1216 20 24 28 32 36 40 44 48 52 56 60 CYARRR2RONRESESY

invocation frequency of recursive calls.

Figure 9 shows the progress of encodings using DACCE. In
the figure, the x-axis is the number of collected context en-
codings. Since we collect the context encodings periodically,
it can also represent the execution time of the program (the
sampling period is about 0.01s). The y-axis is the number
of encoded nodes/edges and the maximum encoding context
ID respectively. Due to space limitation, we only present
the data for four representative benchmarks in Figure 9. As
the data shows, the re-encoding process is triggered slightly
more frequently at the beginning, and the encoding reaches a
relatively steady-state quickly. As the program executes, the
encodings will be adjusted when hot call paths are changed
or new call paths are invoked.

It is very interesting that the value of maximum encoding
context ID decreases after the 12th re-encoding process for
483.xalancbmk. After analyzing the log file, we found that
one newly identified call edge forms a recursive path in the
call graph, and it causes another edge to be identified as a
back edge. Coincidentally, that back edge is contained in the
call path with the maximum encoding context ID. Since that
back edge is not encoded in the later re-recoding process, the
value of maximum encoding context ID decreases.

Figure 10 shows the cumulative distributions of the depth
of the call stack (i.e., the length of full call path) and ccStack.
We present several representative results. In the figure, each
diagram corresponds to one selected benchmark. The x-axis

459.GemsFDTD
100% 3

60%

/ 40%

20%

0%

Figure 10: Cumulative distributions of the stack
depth

is the stack depth needed to represent the calling context
and y-axis shows the cumulative percentage of dynamic
context instances during execution of which the depth is
smaller than the given stack depth. If a curve ascends to
100% very quickly, it means that most contexts for that
benchmark could be stored within a small space. The graph
for 459.GemsFDTD is typical for most programs. The
ccStack is always empty while the depth of the call stack
gradually ascends. For 483.xalancbmk, the stack depth
needed to cover 90% of contexts is about 7200, which is
large. This is because the recursive call paths are invoked
frequently in 483.xalancbmk, and it results in a relatively
larger call stack depth.

7. RELATED WORK

A straightforward method for capturing the current call-
ing context is stack-walking. For example, Valgrind uses
stack-walking method at each memory access to record its
context-sensitive program location, and reports this infor-
mation in the event of a bug [15, 16]. In HpcToolKit [19], the
stack-walking method is also used to obtain the calling con-
text at sample point. However, walking the stack frequently
would incur significant runtime overhead. An alternative
to stack-walking is to build a calling context tree (CCT)
dynamically [2, 17, 8]. The program’s current position in
the CCT is tracked during execution. CCT is very useful in
profiling, but it adds a factor of 2 to 4 to program execution
time. These overheads are unacceptable for most deployed
systems. Recently, sampling-based approaches [22] are used
to reduce the overhead. These works keep overhead low
by identifying the calling context infrequently, and it is
useful for identifying hot calling contexts. However, for
applications need coverage of both hot and cold contexts,
such as testing and debugging, sampling-based approaches
are not appropriate.

In [14], program counter and stack depth are used to
identify a calling context. This method has essentially
no runtime overhead, but there may be many ambiguous
context IDs. To disambiguate the conflict context IDs, the
height of stack frames is resized to differentiate conflicting
stack heights. It relies on training runs to build an offline
dictionary and any new contexts observed online cannot be
correctly decoded.

Another approach that trades accuracy for reduced over-
head is to compute a probabilistic that only calls context
(PCC) [7]. It instruments function calls to compute a
hash value that represents the current calling context. The
context information obtained by this method is probabilistic
and is likely to provide a unique identifier for context.
However, without runtime information, it is difficult to map
the context identifier to call paths. Recent work [5] presents
a method to reconstruct the calling context from hashed
numeric identifiers. It uses the static call graph and dynamic
information to decode the calling context. To reduce the
runtime overhead, it only collects dynamic information at
infrequently executed callsites. However, this may cause
reconstruction to fail. On average, the runtime overhead
is 10% to 20%.

Precise Calling Context Encoding (PCCE) [18] is a re-
cently proposed encoding method to uniquely represent the
current context of any execution point using a number
of integer identifiers (IDs). It adopts the efficient path
profiling encoding approach proposed by Ball and Larus [3]
and adjusts it for call path encoding. PCCE offers a non-
probabilistic approach. The runtime overhead of PCCE is
very low. However, it is a static encoding method. PCCE
requires points-to analysis and static profiling to take care
of insufficient encoding space and handle function pointers,
and it cannot encode the call paths in dynamically loaded
libraries. To handle insufficient encoding space and reduce
the overhead, profiling runs are needed. This adds extra
burden on users, and makes it difficult to use. Moreover, its
source level instrumentation approach would interfere with
compiler optimizations. Therefore, the application of PCCE
in practice is rather limited.

In practical path profiling [6], it uses the encoding space
[N +1,3N + 1] to encode cold paths (N is the maximum

encoding id after deleting cold edge in the control graph).
The computed path id of a cold path is not unique. In our
paper, we use encoding space [mazID+1, 2*mazID+1] in
a different way. In DACCE, a full call path may be divid-
ed into several sub-paths, and we use the numbers in the
range of [mazID+1, 2*mazID+1] to indicate if there is an
unencoded call edge in the current sub-path. The path id
for a sub-path is unique, and it can be decoded correctly.

8. SUMMARY AND CONCLUSION

In this paper, we propose DACCE, a dynamic and
adaptive encoding method, which can encode the calling
contexts of both single-threaded and multi-threaded pro-
grams. DACCE is built on top of existing context encoding
algorithms but differs from them. Existing algorithms must
deal with complete call graphs, while DACCE deals with
incomplete call graphs with adaptive encoding. DACCE
adopts dynamic binary instrumentation so that the power
of calling contexts can be expanded to more applications
including applications linked with dynamically shared li-
braries, multi-threaded and single threaded applications
coded in various programming languages. Furthermore,
DACCE can avoid limitations of source code instrumenta-
tion such as the impact on compiler optimizations. Due
to its dynamic nature, DACCE avoids training runs col-
lecting static profiles as static encoding methods do. With
expanded functionalities, most readers might be concerned
whether a much higher runtime overhead would appear.
DACCE has effectively used dynamic profiles of indirect call
targets to handle indirect call paths and used compression
techniques to handle recursive calls. Its runtime overhead is
even less than the PCCE encoding based on the test of our
DACCE prototype with SPEC 2006 and Parsec 2.1. We are
currently integrating DACCE with several debugging and
performance analysis tools as well as some open source tools
for multi-threaded applications. We believe with DACCE,
the benefit of precise calling contexts can greatly influence
many software development and testing tools.

9. ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (NSFC) under grant 61303052. This
work was also partly supported by the NSFC under grants
61332009, 61303051, and 60925009, the National High
Technology Research and Development Program of China
under grant 2012A A010901, the Innovation Research Group
of NSFC under grant 61221062, and the National Basic
Research Program of China under grant 2011CB302504.

Wei Hsu was partly supported by the National Science
Council of Taiwan, ROC, under grants 102-2220-E-002 -031
and 102-2219-E-002 -025.

10. REFERENCES

[1] Profiling all paths: A new profiling technique for both
cyclic and acyclic paths. Journal of Systems and
Software, 85(7):1558 — 1576, 2012.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting
hardware performance counters with flow and context
sensitive profiling. In Proceedings of the ACM
SIGPLAN 1997 conference on Programming language
design and implementation, PLDI 97, pages 85-96,
1997.

3]

[10]

[11]

[12]

T. Ball and J. R. Larus. Efficient path profiling. In
Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture,
MICRO 29, pages 46-57, 1996.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
parsec benchmark suite: characterization and
architectural implications. In Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques, PACT ’08, pages 72-81, 2008.
M. D. Bond, G. Z. Baker, and S. Z. Guyer.
Breadcrumbs: efficient context sensitivity for dynamic
bug detection analyses. In Proceedings of the 2010
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’10, pages 13—24,
2010.

M. D. Bond and K. S. McKinley. Practical path
profiling for dynamic optimizers. In Proceedings of the
international symposium on Code generation and
optimization, CGO ’05, pages 205-216, 2005.

M. D. Bond and K. S. McKinley. Probabilistic calling
context. In Proceedings of the 22nd annual ACM
SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA ’07, pages 97-112,
2007.

D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining
hot calling contexts in small space. In Proceedings of
the 32nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI '11, pages
516-527, 2011.

S. Eranian. Perfmon2: the hardware-based
performance monitoring interface for linux.
http://perfmon2.sourceforge.net /pfmon_usersguide.html,
2011.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack
information. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, SP ’03, pages
62-71, 2003.

P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’05, pages 213-223,
2005.

J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E.
Ramadan, D. E. Porter, D. L. Chen, and E. Witchel.
Improved error reporting for software that uses
black-box components. In Proceedings of the 2007
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’07, pages 101-111,
2007.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’05, pages 190-200, 2005.

T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred
call path profiling. In Proceeding of the 24th ACM
SIGPLAN conference on Object oriented programming
systems languages and applications, OOPSLA 09,
pages 175-190, 2009.

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and
implementation, pages 89-100, 2007.

J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In
Proceedings of the annual conference on USENIX
Annual Technical Conference, ATEC ’05, pages 2—2,
2005.

J. M. Spivey. Fast, accurate call graph profiling. Softw.
Pract. Ezper., 34:249-264, March 2004.

W. N. Sumner, Y. Zheng, D. Weeratunge, and

X. Zhang. Precise calling context encoding. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, ICSE 10, pages
525-534, 2010.

N. R. Tallent, J. M. Mellor-Crummey, and M. W.
Fagan. Binary analysis for measurement and
attribution of program performance. In Proceedings of
the 2009 ACM SIGPLAN conference on Programming
language design and implementation, PLDI '09, pages
441-452, 2009.

X. Zhang, A. Navabi, and S. Jagannathan. Alchemist:
A transparent dependence distance profiling
infrastructure. In Proceedings of the 7th annual
IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 09, pages 47-58,
20009.

X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing
long running programs through execution fast
forwarding. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software
engineering, SIGSOFT ’06/FSE-14, pages 81-91, 2006.
X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D.
Choi. Accurate, efficient, and adaptive calling context
profiling. In Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and
implementation, PLDI 06, pages 263-271, 2006.

