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FPS: A Fair-Progress Process Scheduling Policy
on Shared-Memory Multiprocessors

Chenggang Wu, Jin Li, Di Xu, Pen-Chung Yew, Fellow, IEEE, Jianjun Li, and Zhenjiang Wang

Abstract—Competition for shared memory resources on multiprocessors is the dominant cause for slowing down applications and
making their performance varies unpredictably. It exacerbates the need for Quality of Service (QoS) on such systems. In this paper, we
propose a fair-progress process scheduling (FPS) policy to improve system fairness. The strategy is to force the equally-weighted
applications to bear the same amount of slowdown when they run concurrently. When we find an application suffered more slowdown
and accumulated less effective work than others, we allocate more CPU time to give it a better parity. This policy can also be applied to
threads with different weights. Evaluation results show that FPS can significantly improve system fairness at the expense of a slight
loss in throughput. We can also keep the performance information of an application to guide process scheduling when it runs again
later on. When FPS uses such performance information from previous runs, fairness can be maintained without the overhead of the

training periods required in FPS. Throughput can thus be enhanced.

Index Terms—Cross-run optimization, memory bandwidth, process scheduling, performance fairness.

1 INTRODUCTION

SHARED—MEMORY multi-core processors are the most prev-
alent platforms used today. When applications run con-
currently on such system, competition for shared memory
resources such as on-chip caches and DRAM subsystems
could degrade their performance unpredictably (compared
to when they run alone on the same system). Fig. 1 shows the
effect of resource contention on four equally-weighted and
concurrently running applications, perl, bwaves, milc and lib-
quantum, all from SPEC2006. They run on a 4-core CMP with
private cache (details are in Section 3.1). Compared to the iso-
lated run, the execution time of perl increases by 1.10x, while
the execution time of libquantum increases by 1.62x because
libquantum is memory-intensive. It suffers more slowdown
due to off-chip main memory contention. If we replace
the last two co-runners with leslie3d and soplex, the relative
slowdown of bwaves changes from 1.19x to 147x. It
shows that performance of an application highly depends on
its co-runners and can change unpredictably due to resource
contention. It violates the assumption of the weight-based
CPU time allocation policy in the OS, and exacerbates the
need for Quality of Service (QoS) on such systems.
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In order to provide better fairness to concurrently run-
ning applications, some prior work tried to guarantee the
applications their fair share of system resources, such as
cache space [8] and/or memory bandwidth [10]. Some tried
to maintain similar performance on demanded resources,
such as cache miss rates [3], [21] and memory-related stall
time [6]. However, there still exist gaps between the share
of demanded resources or the resource performance and
the real application performance (e.g., IPC). In this paper,
we assume that, for equally-weighted applications, a system
is fair if all applications’ experienced slowdowns are the
same. This assumption is based on application performance
rather than on resource-related metrics. It has also been used
in prior work [2], [9], [11].

In this paper, we propose a fair-progress scheduling (FPS)
policy, a process scheduling policy that ensures fairness
among applications running concurrently. Its basic mecha-
nism is as follows. For each running application, we use
the data gathered from the performance monitoring unit
(PMU) and the results from an analytical model to derive
the amount of its forward progress after the extent of a time
quantum. If we find the application has suffered more
slowdown (thus accumulated less progress) than others
within the time quantum, we allocate more time quanta
to the application and allow it to make the same forward
progress as others.

To calculate the forward progress of an application, the
main challenge is to estimate its performance if it runs alone
on the system while it is actually running simultaneously
with others [2], [6]. In this paper, we propose a software-
based approach. First, we aggregate all executed time
quanta into phases [15], [16], [17], [18]. The performance in
the time quanta of the same phase should be very similar.
In each phase, if the memory bandwidth contention in one
quantum meets one of the three low-contention criterions
(Section 3.1), its performance is close to its run-alone perfor-
mance. We then incorporate the information to other time
quanta in the same phase and estimate their forward progress.
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Fig. 1. Performance variations of concurrent applications.

For a phase without such low-contention quanta, we
insert a training quantum in the phase with the desired low-
contention by reducing the number of co-runners during
the training quantum (Section 3.3). Training improves the
accuracy of run-alone performance estimation and the sys-
tem fairness at the expense of some resource idleness and
throughput degradation. To mitigate this problem, we pro-
pose techniques to effectively reduce such training over-
head. In addition, by setting an upper bound on the training
overhead, FPS gives the OS an effective and robust mecha-
nism to balance between system fairness and throughput. It
also allows us to achieve different fairness objectives.

In modern computer systems, such as data centers, an
application often runs multiple times, each maybe with dif-
ferent co-runners. In such scenarios, we found it is feasible
to utilize the information of previous runs to reduce the
training overhead and throughput degradation in later runs.
The reason is that identical phase identified by our phase
identification scheme has similar performance in each run
regardless of which their co-runners are. Hence, such perfor-
mance information can be used across multiple runs.

We propose phase-based cross-run optimization that uses
a phase repository to keep phase information across program
executions. This mechanism can be fully automatic and
transparent to the users. Information acquired during low-
contention time quanta can be accumulated over different
runs. The need of inserting training quanta can be reduced,
and so is the degradation of system throughput.

Our experiments are done on commercial servers with
Intel multicore processors. Our results show that compared
to a native OS scheduler, FPS can improve system fairness
by 53.5 and 65.2 percent on a 4-core system with private
cache memories and a 4-core system with a shared cache
memory with throughput degradation of 1.1 and 1.6 percent,
respectively. For memory-intensive workloads, FPS
improves system fairness by an average of 45.2 and 21.1 per-
cent on 4-core and 8-core systems, respectively when cap-
ping the training overhead to 2 percent. Even without using
any training, FPS can still get a 15 percent fairness improve-
ment over the default OS scheduler with negligible through-
put degradation. When cross-run optimization applied to
FPS, the overhead and system throughput degradation
brought by training have been eliminated dramatically at the
cost of some extra temporary disk space per application.

The main contributions of this work are as follows.

First, we propose a scheduling policy to provide perfor-
mance fairness on commodity multicore systems. The pol-
icy can significantly improve system fairness at the expense
of slightly decreased throughput.

Second, we propose a practical, phase-based run-time
scheme to obtain the run-alone performance of an application

while it actually runs concurrently with others. It is software-
based and does not need any special hardware support.

Third, an effective and robust tuning scheme is used to
let the user freely make tradeoffs between system fairness
and system throughput.

Compared to our previous work [23], we introduce an
automatic and transparent cross-run optimization scheme
that accumulates phase information across multiple runs to
alleviate the need of training quanta.

The rest of this paper is organized as follows. Section 2
shows an overview of our fairness policy. The run-alone-
performance estimation scheme is introduced in Section 3.
Section 4 introduces the cross-run optimization scheme.
Sections 5 and 6 present the evaluation methodology and
results, respectively. Related works and discussions are
present in Section 7. Finally, we conclude our work in
Section 8.

2 PoLicy OVERVIEW

2.1 Specifying the Fairness Target

Similar to previous work [2], [6], [9], [11], we assume a sys-
tem is fair if equally-weighted applications experience same
amount of slowdown when they run concurrently on the
system. As shown in (1) and (2), on a system with N applica-
tions, the slowdown of application i is 7%, ../ 1" nes Where
T'ureq and T, are the execution time when the applica-
tion runs concurrently with others and runs alone, respec-
tively. In the context of process scheduling, an application’s
execution time 7" includes both the time when it executes on
a CPU and the time when it is swapped out. System unfair-
ness is defined as the ratio between the maximal and mini-
mal slowdown among the IV applications. An unfairness of
1 means the system is perfectly fair

slowdowni = TZhared/thlone (1)

MAX{ slowdowny, . .
MIN{slowdowny, . .

., slowdowny_1}

un fairness = (2)

., slowdowny_1}

2.2 Basicldeas

FPS tries to guarantee that equally-weighted applications
experience the same slowdown when they run concurrently.
In another word, the applications should accomplish the
same amount of effective work (measured in Tyne) in the
same time period. We use forward progress to quantitatively
measure the effective work that an application has completed.
Assume when an application runs alone for C,,;; cycles, it
makes a progress of 1. When it runs concurrently with
others, its progress can be calculated as follows:

g 9 I 1
alone __
Z Cunit Z <Imq 8 Gu,nit) ' (3)

q=1 q=1 alone

progress =

For a time quantum ¢, CY,  is the number of CPU cycles
needed when an application runs alone. An application’s
progress is the accumulation of C?, . in each executed time
quantum (from 1 to Q) normalized toC,,;. For example, an
application runs simultaneously with others for C;*2

cycles but suffers 4x slowdown, it has only made a progress
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of 0.5, while another application runs for C,,;: cycles but
does not have any slowdown, it has made a progress of 1.

In (3), I is the number of executed instructions during
time quantum ¢. It can be obtained directly from PMU. The
main challenge is to estimate I PCglone,' In Section 3, we
describe our proposed method in more detail.

In order to enforce equally-weighted applications to have
same amount of slowdown, FPS tries to let them achieve the
same progress in a given time period. Algorithm 1 shows the
basic scheme of FPS. Each time we need to schedule applica-
tions, we update the progress of each application according
to the runtime information gathered from PMU and the esti-
mated [PCY, . We then schedule the application with the

alone®
smallest progress first on each available CPU core.

Algorithm 1: Overview of Policy

01 Initialize task-queue: run-queue, wait-queue

02 while task remains do

03 run all apps in run-queue

04 wait for a quantum

05 /I apps run, and then the scheduler resumes here:
06 for each app in run-queue do

o7 pause execution

08 move app to wait-queue

09 process with PMU data

10 estimate IPCy;y, Of this quantum

11 progress+=1/IPCyione X 1/Cynit

12 end for

13 /I schedule for fairness:

14 for each available CPU core do

15 find app with smallest progress in wait-queue
16 move app to run-queue

17 end for

18 end while

3 ESTIMATING RUN-ALONE PERFORMANCE

To estimate the run-alone performance in each time quan-
tum, we make use of the phase behavior in applications.
First, we group executed quanta into phases, and use the
attribute that the performance of the quanta in the same
phase should be similar [15], [16], [17], [18]. If we know
IPCY, = of at least one quantum q in a phase, we can apply
the information to other quanta in the same phase. How to
estimate/PCy,,,. of a given phase? An intuitive solution is to
select some quanta in that phase and let them run alone.
But, this method would result in large CPU idleness if there
are many applications and each has many different phases.
Fortunately, we found that in some situations, even when
an application run concurrently with others, its perfor-
mance is still the same as (or very similar to) that of when it
runs alone. In which case, we can get the estimated IPCY,
without running the application alone.

3.1 Identifying Low-Contention Applications in a
Quantum

Competition for shared memory resource is the primary

cause for performance variations [2], [3], [6], [7], [8], [21],

Chip 0 Chip 1
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Fig. 2. Architecture overview of the evaluation system.

[22]. Even if contention happens in an unpredictable way,
we observed that at least in three cases, the execution of an
application suffers little or minor interference. Hence, we
could assume that IPCY, =~ IPC?, . in those cases.

In this section, we use measured results on real systems
to better explain the phenomenon. Fig. 2 shows the evalua-
tion system. The system is equipped with two Intel Xeon
E5410 quad-core processors. Each core has a private L1 data
cache, and each two cores share one L2 data cache (LLC) on
the chip. The benchmarks are from SPEC2006 suite, com-
piled by Intel Compiler with flag-O3, and use the reference
input set. We generate 10 random benchmark mixes. To
evaluate the contention on the main memory, we run bench-
marks on cores 0, 1, 4 and 5 to isolate the impact of the
shared cache. We also evaluate the situation in which both
cache and main memory are shared by executing them on
cores 0, 1, 2 and 3. We use Bus Transaction Rate (BTR) to
characterize the memory-bandwidth requirement of the
execution. BTR is defined as the number of full-cache-line
bus transactions per microsecond. The realistic peak BTR
of the memory bus is 120 trans./usec, and that of the FSB is
80 trans./usec. The OS is Linux, kernel version v2.6.29.

In this paper, we call the execution part of an application
during a scheduling time quantum an application segment, or
segment for short. In each segment, its IPCY?, . can be
obtained via PMU. We also get its IPC?, by querying an
offline performance profiling file, which is generated by
executing the application alone on the same system. At last
we can calculate its speedup as IPC?, . /IPCY . Note the
method of obtaining IPCY by profiling is only for our
evaluation and analysis purpose. It is not a part of our
scheduling policy.

Memory bandwidth contention. We associate the speedup
of each segment s with two memory-bandwidth related
metrics: Sel fBTR,, i.e., the BIR of s when running with
others, and SysWideBTR;, i.e., the total BTR of s and all of
its co-runners within the quantum. To show the correlation
among the metrics, Figs. 3a and 3b plot the evaluation
results of the same randomly selected and representative 1k
segments in private-cache mode. Fig. 3c shows a subset of
them. The three low-contention cases are as follows:

1. The bandwidth requirement of a segment is
extremely low (Criterion 1). In this case, its perfor-
mance degradation due to bandwidth contention is
very small no matter what applications it runs with.
Evaluation results shown in Fig. 3a confirm that
memory-intensive segments generally suffer more
slowdown than less intensive ones [1]. In this paper,
we set a threshold BIRge o to 4 percent of the
peak BTR. If BTR of a segment is smaller than the
threshold, we assume its IPC?,LG,,,Cd is similar to
IpPC!

lone*
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Fig. 3. Speedup over alone run on private cache mode (PC) and shared
cache mode (SC). X-axes are the percentage of measured BTR com-
pared to peak BTR. Y-axes are speedups, 1 means no slowdown. The
solid lines show the curve-fitting of the points. The dashed lines illustrate
the thresholds.

2. The system-wide bandwidth utilization is low
(Criterion 2). In [4], authors found that even when
the average bandwidth requirement of concurrent
segments is lower than the realistic peak bus band-
width, contentions still happen because of the fluctu-
ation in memory intensity within the segments. Only
when the system bandwidth utilization is much
lower than peak, the remaining available bandwidth
could tolerate the fine-grained contention and that
results in a relatively smaller slowdown. In this
paper, we set a system-wide BTR threshold
BTRgyswider.ow to be one third of the peak BTR. If the
system-wide BTR is smaller than BTRgysuwiderow, We

assume [PC?, . is similar to IPCY,  for all the con-

current segments.

3. The system wide BTR is larger than BTRsyswideLow
but only one of the concurrent segments is memory-
intensive, i.e., whose BTR is larger than BTRge 0w
(Criterion 3). Severe contention only happens when
there are at least two memory intensive segments
that are fighting against each other. Fig. 3c shows a
subset of evaluated segments that belong to this
case. Compare it with Fig. 3a, we found using this
criterion could successfully pick up those quanta
that have inherently high memory requirement but
suffer relatively small slowdown.

Cache and Bandwidth Contention. Similarly, Figs. 3d, 3e, 3f
show the execution results in shared-cache mode. Com-
pared to the results in private-cache mode, we have the
following observations. First, the performance degrada-
tion could become more severe because of the added

shared cache contention. Second, the tendency of perfor-
mance variations is quite similar to that of the private-
cache mode. Previous work also shows that contention
for shared cache is not the dominant cause for perfor-
mance degradation, but the contention in many compo-
nents of the main-memory is [1]. Although the segments
selected according to the three abovementioned criteria
have bigger performance degradation compared to that in
the private-cache mode, their performance degradation is
still relatively small. As will be shown later, the informa-
tion gathered from such co-scheduled applications will
help to estimate theIPCY,  in each executed quantum.

alone

3.2 Phase Identification and Performance
Information Management

Program phase behavior has been studied extensively. In
this paper, we use a runtime basic block vector (BBV)-based
phase identification scheme [15], [16], [17], [18] to classify
similarly behaved quanta into a phase. BBV analysis has
been shown to be an effective method of identifying phases
in programs [15], [16].

During the execution of each application segment, we
use PMU to sample its instruction pointers (IP) and con-
struct a BBV. Each element of the BBV maps to a static basic
block, and its value is increased by 1 when an IP sample
falls into it, so the BBV reflects the distribution of the sam-
pled IPs in the application’s code space. We quantify the
similarity of two normalized BBVs by calculating their
Manhattan Distance, as shown in (4) with x; and y; each an
element of vector X and Y, respectively. N is the number of
static basic blocks in the application binary. If the Manhat-
tan Distance of two BBVs is smaller than a threshold, the
corresponding segments are in the same phase

N
ManhattanDistance(X,Y) = Z|xl — il (4)
=1

Evaluation results of PMU sampling overhead and phase
identification accuracy are in supplemental materials, which
can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2014.2306411.

For each application, we maintain a phase table to record
the performance information of its phases. The goal is to
estimate the run-alone performance of a given phase, denoted
aslPClqsc. After the execution of a quantum ¢, first we do
phase identification and calculate some basic performance
metrics such as BTR!, _..IPCY . and system-wide BTR
according to the PMU data. We then check whether the
application’s execution meets one of the three low-contention
criteria. If it does, its performance data is considered valid,
otherwise invalid.

In any case, we update the performance information in
the phase table following the method shown in Table 1.
Before a phase gets its first valid execution, IPC)s. is the
average of all previous invalid executions. After the phase
gets its first valid execution, the intended value of IPC},. is
the average of all previous valid executions. The method
provides the phase with a running estimate, and the three
low-contention criteria work as a filter to let only suitable
data participate in the estimation of IPC), 4.
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TABLE 1
Per-Phase Performance Info Update Method
Exec. IPCY 1req Of
- Updated IPC,
history | current quantum P phase
None Valid/Invalid IPCpnase = IPCgarea
IPC, =
Invalid phase
#valid=0 (IPCphase *n+ IPCghared)/(n + 1)
Valid IPCphase = IPquhared
Invalid Unchanged
#valid >=1 Valid IPCphase= .
(IPCypase *n+IPCy0g)/(n+ 1)

Finally, the estimated IPCY for this quantum is the
larger one between IPC.. and IPCY . because we
assume the IPC of a simultaneously running segment can-

not be larger than that of when it runs alone.

3.3 Training Quantum

During execution, a phase may never have a quantum
that fits any of the three low-contention cases. It can
degrade the accuracy of the estimation. In such a case, we
can inject a training quantum to create a low-contention
situation in the phase.

For each application, we use a Markov predictor [17] to
predict its phase changes based on its full history. To tol-
erate incorrect prediction, the predictor reports several
phases that are most likely to appear in next quantum
according to their transfer probabilities. If one of the pre-
dicted phases has appeared at least twice in a history and
we have not obtained its valid IPCy,,. yet, that applica-
tion will become a training-target candidate. A training
target selection policy is used to determine a target if
there are multiple potential targets, then FPS transfers the
scheduling policy to training in next quantum. More
details about training are present in supplemental materi-
als, which is available online.

4 FPS wiTH CROSS-RUN OPTIMIZATION

4.1 Cross-Run Approach
So far we assume training is done each time an application
runs on the system. However, on modern computer systems
such as data centers, applications often run repeatedly with
different co-runners and different input sets. In such scenar-
ios, even though the overhead and the degradation in sys-
tem throughput brought by training is not high in each
execution, it becomes noticeable when the application runs
repeatedly and such overheads are sustained. We can use
fairness-throughput tuner to make a tradeoff between system
fairness and throughput. It mitigates this problem but not
eliminates it. In addition, the phase table is discarded at the
end of one execution. It needs to be reconstructed from
scratch in the next run, wasting the valuable information
obtained in the previous runs. In this section, we propose to
capitalize on such information and to improve FPS across
different runs. It uses a phase repository to allow such
phase information to persist across runs for an application.
As described in Section 3.2, we use a runtime basic
block vector (BBV)-based phase identification scheme to
group similarly behaved quanta into phases. The identi-
cal phase recognized by BBV in different runs has

similar behavior due to it always represents same sec-
tions of code and same amount of time spent in this
code. The intuition behind this is that the behavior of
program at a given time is directly related to the code it
is executing and its frequency during that interval [15].
It is independent of any individual architecture metric
[17]. In FPS, valid IPC))qs information of a phase is dis-
carded when the application exits. When it appears in
another run, training quanta could occur again.

So we can aggregate the valid phase information in the
phase table into a phase repository called phasedb at the end
of each execution. The format of an entry in phasedb is same
to that in phase table. Phase table records runtime phase
information in memory including valid and invalid while
phasedb preserves only valid phase information accumulated
from previous runs in disk. Each application has its own pha-
sedb with a prefix of its name. When an application runs next
time, it first reads phase information from its phasedb into its
runtime corresponding phase table and then updates it dur-
ing its execution using the same method described in Section
3.2. Reading and writing from the repository doesn’t take up
the execution time of an application and is optional. So, it
doesn’t bring extra time cost to the FPS. If we don’t want to
use cross-run optimization, it can simply be ignored.

In this way, training quanta are injected only at the first
few runs. As valid information accumulated, training
quanta reduced greatly in the later runs. So the throughput
degradation only exists at the beginning and can be ignored
during the multiple runs.

The only cost brought by the cross-run optimization is
some extra temporary disk space. The total disk space
required is modest because only valid phase information is
accumulated and stored. It can also be cleared or taken
away at any time.

4.2 Sensitivity to Input Sets

A program input set refers to all of the data that are
accessed but not generated during a program execution,
including command-line options, content of input files, and
so on [27].

Program inputs may change the code sections being
executed and/or its executing frequency. That could
make FPS get different samples of BBV. As a result, new
phases and phase sequences could be brought in when
input changed. Some of the valid phase information can
still be used if that phase appears in the other run, while
some of it may not. That depends on how much change
that input has brought. However, what we care is the
new phases that brought by the input set change rather
than the input set itself. Some new phases can get valid
IPCyjone from spontaneous low-contention execution. If
that does not happen, it would bring training quanta. The
number of training quanta will not be greater than the sit-
uation when cross run optimization doesn’t be applied to
FPS. So, cross-run would not bring additional overhead.
In addition, input doesn’t affect the system fairness bene-
fit brought by FPS at all. When this input appears again
in the future run, the number of training quanta would
reduce a lot because valid phase information has been
accumulated in the phase repository.
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TABLE 2
Parameters Setup of Scheduler

Scheduling quantum length 100ms

PMU sampling period 500k instructions
BBV similarity threshold 0.7

Training overhead limitation | Unlimited

Sequential training trigger #failed training>5 &&
failure ratio>60%

5 METHODOLOGY

Scheduler implementation. In order to evaluate the effec-
tiveness of our FPS scheduling policy, we implemented a
user-level process scheduler in Linux. The scheduler
itself executes as a daemon. When an application is
scheduled to run, the scheduler forks out a process and
creates a PMU sampling context for it. The scheduler
sets a timer to count the scheduling time quanta. When
the timer expires, the scheduler is notified and enters its
scheduling routine. The algorithm is described in Section
2.2. Applications are paused by PTRACE _ATTACH, so
the Linux kernel will not schedule them. We release the
selected applications using PTRACE _DETACH and let
them run, reset the timer, and let the scheduler sleep to
wait for the next notification.

System setup. We use the same system setup described in
Section 3.1. Table 1 in supplemental materials, which is
available online, shows the system setups for our evalua-
tions. When evaluated on a 4-core system, we use different
CPU cores to create different scenarios of resource conten-
tion. We also evaluated on an 8-core system. Unless stated
otherwise, Table 2 shows the parameters used in our
evaluation.

Workloads. Workloads are constructed using SPEC CPU
2006 suite. We run each benchmark alone for 10 seconds,
and record the number of instructions executed. The same
part of execution is used when a benchmark is selected to
run. Job normalization eliminates the variation of the exe-
cution length. It results in a fair measure of the potential
unfairness because almost all parts of benchmarks are
running concurrently. It also gives fair measurements of
system throughput because if the applications are different
in length, load balancing could influence the results
significantly [4].

To evaluate the generality of FPS, we use 10 randomly
generated multiprogramming workloads that are pre-
sented in details in the supplemental materials, which is
available online.

Metrics. We compare the results of FPS to the native
Linux scheduler (kernel v2.6). In order to show fairness
improvement, we measure system unfairness as defined in
Section 2.1. We use two metrics to evaluate the impact of
FPS to system throughput: work-load turnaround time, i.e.,
the time from when all applications start at the same time to
the last application finishes; and extended weighted speedup
(EWSpeedup). The weighted speedup defined in [11] has
been used to measure the throughput of multiprocessors
systems on which the number of concurrent threads does
not exceed the number of CPU cores. It is calculated as the
sum of the speedups of all concurrent applications.

However, a job scheduling policy may pathologically
improve this metric by forcing all jobs run serially so that
each job suffers no slowdown. So, we define EWSpeedup as
shown in

N-1 i

C,
EWSpeedup = E % (5)
i=0 Csh,ared + Cwusted

The key to the definition is that, when calculating the
speedup of an application 4, if any CPU core becomes
idle because the number of remaining applications
becomes smaller than the number of available cores, the
wasted cycles on the idle CPU core are counted as its
execution time. It is because in our policy, training
causes CPU to become idle, and we attribute such
wasted cycles to the training target in the corresponding
training quantum. A harmonic mean is usually used for
speedups [14] to give a combined measure of both fairness
and throughput. We don’t use this metric because it is
determined by applications” individual IPCs. Our process
scheduling is not to give the applications fair IPC during
execution, but to adjust CPU time distribution to achieve
fair execution time.

To give a thorough demonstration of the effectiveness
of cross-run optimization, we show that identical phases
recognized by BBV have similar performance even when
the input changes. We run a program alone to record its
phase information such as IPC,,. and keep it in a phase
repository. In the following runs, if BBV recognizes one
phase has appeared in a previous run, we use IBM SPSS
statistics tools to analyze whether the stored phase infor-
mation is applicable to this run. The evaluation results
are presented in the supplemental materials (Section 5),
which is available online.

Then we evaluate system performance using the follow-
ing usage scenarios.

Scenario 1 comparison. We use this scenario to compare
the previous results of FPS. Each workload runs 20 times
from scratch with fixed input under reference workload
and gets an average result. Then an average result of all the
10 workloads represents the results on one platform. In this
way, cross-run is actually applied within one workload.
Evaluation results are shown in Sections 6.1, 6.2 and 6.3.

Scenario 2 random co-runners. This scenario is used to
show valid phase that preserved in one run can be used in
another run even though the co-runners have changed. All
the 10 workloads run in a randomly selected order. The total
20 times executions represent the random execution sequen-
ces of all the workloads. Evaluation result is shown in
Section 6.5.

Scenario 3 variable inputs. This scenario is used to show
the impact of input changes on FPS and cross-run optimiza-
tion. We extend WL#9 to make it contain all the benchmarks
that contain multiple input files. Then we run WL #9
20 times, benchmarks with multiple input files change an
input in a round-robin manner each time. The reason we
extend WL #9 is it has already contained most of these
benchmarks and has a larger IABW when extended. We can
get similar results if we chose to extend other workloads.
Evaluation result is shown in Section 6.6.
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Fig. 4. Average performance on 4-core systems.

For each scenario, the system fairness benefit doesn’t
lose, however, the training overhead and the degradation of
system throughput has greatly reduced.

6 EVALUATION RESULTS

6.1 4-Core System Results

Fig. 4 shows the average performance of 10 random work-
loads on the 4-core systems. We evaluate four different
scheduling policies: the native OS, FPS, and Optimal.
Cross-run represents cross-run optimization applied to
FPS. The optimal policy uses our fairness-oriented sched-
uling algorithm but IPC,,,. of each quantum comes from
offline profiling runs instead of runtime estimation, as
described in Section 3.1.

In the private-cache mode, the unfairness under OS
scheduler ranges from 1.08 to 1.23, the average is 1.14. FPS
improves fairness on all workloads. The average of unfair-
ness is decreased to 1.06, and about 53.5 percent of the unfair-
ness is eliminated. On the shared-cache-diff-chip mode, the
system peak bandwidth is unchanged but cache contention
is added. Cache contention and the resulted higher pressure
to bandwidth let the system unfairness under OS increased
to 1.22. About 65.0 percent of the unfairness is eliminated by
FPS, and it decreased to 1.08. On the shared-cache-same-chip
mode, bandwidth contention is further increased. The
unfairness under OS is decreased to 1.29. The unfairness
under FPS is 1.10. FPS eliminates about 65.8 percent of the
unfairness. Results show that FPS is effective in eliminating
unfairness on both private-and shared-cache systems. The
unfairness results of cross-run optimization are close to the
FPS in both private and shared-cache systems.

For all the evaluated modes, the most severe system
throughput degradation is about 2 percent compared to
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Fig. 5. Effect of different training limitation.

OS, no matter whether it was measured in workload turn-
around time or EWSpeedup. The average decrease is 1.1,
2.06 and 1.12 percent respectively for the three execution
modes. The main sources of the degradation is PMU sam-
pling and CPU idleness caused by training. Cross-run opti-
mization can eliminate the degradation brought by training
and the average decrease is no more than 1 percent.

In every situation, the optimal policy achieves almost
perfect fairness on all workloads and the best through-
put. It shows the effectiveness of the fairness-oriented
scheduling algorithm.

6.2 8-Core System Results

Fig. 5 shows the average performance of the 10 workloads
on 8-core system. System unfairness under the native OS
increases to 1.55 compared to the 4-core modes. FPS could
eliminate about 15 percent of the unfairness even without
any training, because it uses the data from spontaneous
low-contention execution. The overhead is quite negligible.
When we gradually relax the training overhead limita-
tion, the fairness improves significantly and system
throughput degrades slightly. When the training over-
head is unlimited, FPS eliminates 70 percent of the system
unfairness at the expense of 4.5 percent system through-
put degradation. Compared to the results on 4-core sys-
tems, throughput degradation is slightly larger because
the number of available CPU cores is doubled but the
training parallelism is nearly unchanged. Hence, more
CPU idleness is incurred due to training. Evaluation
shows that our fairness-throughput tuner is a tradeoff
between fairness and system throughput.

Tuner (Section 2 in the supplemental materials, which is
available online) brings moderate performance to the sys-
tem. It is just an approach of mitigation rather than elimina-
tion. However, cross-run optimization can handle this
problem thoroughly. When it applied to FPS, system unfair-
ness is decreased to 1.12, eliminating about 75 percent of the
unfairness. At the same time, the system throughput degra-
dation is only about 0.5 percent.

We use train ratio to represent the percentage of training
quanta in the total execution quanta. The more train ratio an
execution has, the lager training overhead it gets. Table 3
shows that cross-run optimization can reduce the training
overhead greatly.

6.3 Results on Memory-Intensive Workloads
Memory intensive workloads would result in more training
quanta than non-memory-intensive ones. If all applications
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TABLE 3
Training Overheads on 8-Core System

Scheme Train Ratio Training overhead
Train unlimited 25.7% 6.3%
Train 3% 13.4% 3.0%
Train 2% 10.4% 2.0%
Train 1% 5.7% 1.0%
Cross-Run 2.0% 0.2%

in a workload are memory-intensive, training overhead
may become unacceptable, and the accuracy of IPCyomne
estimation may also be affected. We evaluate the effective-
ness of FPS on 5 manually constructed and representative
memory-intensive workloads. Evaluation results show FPS
can still eliminate system unfairness significantly. When
we apply cross-run optimization to memory-intensive
workloads, system unfairness is 1.12, which is better than
1.18 under training-unlimited. At the same time, system
throughput degradation is only by 1 percent. Training over-
head and throughput degradation are greatly reduced.
More details are provided in the supplemental materials
(Section 4.4), which is available online.

6.4 The Length of a Quantum

Choosing a proper length for a quantum is a tradeoff of
many considerations. First, we should consider fairness as
well as overhead. Second, performance of quanta in the
same phase should be as similar as possible. Third, it should
be easily adoptable by OS.

We choose 100 ms as the length of a quantum which is
the default time slice of Linux native scheduler under
round-robin strategy. We compare the fairness and over-
head with other length of quantum within the range of
Linux time slice. All the evaluation results are on the 4-core
shared-cache-same-chip mode.

Fig. 6a shows the average fairness of all benchmarks
under different length of quantum. Fig. 6b shows the cor-
responding overhead. Lager length of quantum has low
overhead but it brings poorer fairness benefit. When we
decrease the length of quantum toward 100 ms, fairness
improves greatly with a slight growth in the overhead.
When we set the length below 100 ms, fairness cannot get
much better while the overhead increase rapidly.

For each identified phase, we compute the relative stan-
dard deviation (% RSD) of the IPCy,y. for the quanta within
the phase. Smaller %RSD means the IPCs of quanta that
in the same phase are similar, and is better. Finally, we
report the application’s phase identification accuracy by cal-
culating the weighted %RSD of all phases, as

WRSD= > w, xRSD,, where
for each p:,zLuse P (6)
P
'LUp )

Z for each phase i e

where n, is the number of quanta that belong to phase p.
Each phase is assigned with a weight w,. Fig. 8 shows the
phase accuracy of all benchmarks. The average WRSD is
5 percent, this shows that the phase identification scheme
could successfully classify the executed quanta so that the
performance in each phase is quite similar.
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Fig. 6. 4-Core shared-cache-same-chip evaluation results.

Therefore, 100 ms is a proper length in our evaluation
when we consider all of these.

6.5 Impact of Co-Runners on Cross-Run
Optimization

In the previous sections, cross-run optimization is applied
to the same workload which means applications run with
same co-runners. In this section, we run workloads 20 times.
Each time, a randomly selected workload runs. In this way,
random co-runners run every time.

Fig. 7 presents the train ratio in these 20 runs. Each verti-
cal bar along the z-axis represents a random workload run.
The y-axis shows train ratio in this execution.

During the first execution, the repository is empty, thus
the train ratio is very close no matter whether cross-run
applied or not. As additional executions occur, the valid
phase accumulated. Train ratio under cross-run optimiza-
tion is reduced dramatically.

6.6 Impact of Input Change on Cross-Run
Optimization

There are nine benchmarks with multiple input sets for
the reference workload in the SPEC CPU 2006. We
extend WL#9 to make it contain the whole multiple
input benchmarks.
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40% C, Run-
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N
o
=
|
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Fig. 7. Train ratio comparison of train unlimited and cross-run on 8-core
systems.
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We run the extended WL#9 20 times and change the
inputs of benchmarks in a round-robin manner.

Fig. 9 presents the variation of train ratio when input set
changes across the 20 runs. Each point along the z-axis rep-
resents a workload run. The y-axis shows train ratio. Train
unlimited means FPS without cross-run optimization. Vari-
able input means we use cross-run optimization with vari-
able inputs while fixed input represents cross-run with fixed
input. If we don’t apply cross-run optimization to FPS, each
run is independent. When we use cross-run optimization,
each run is a training run for the later runs while it is actu-
ally a production run itself.

The difference between Train unlimited and Variable Input
in a run indicates some phases don’t need to be trained
under this input because they have already appeared in pre-
vious runs. Fixed Input gets significant low train ratio since
the second run because few new phases are appeared. After
running 9 times, train ratio of Variable Input is close to that
of Fixed Input because all the inputs have been executed and
valid phases all have been accumulated.

7 RELATED WORK

Techniques that improve fairness on multiprocessors have
been widely studied, and contention in memory resources
was identified as the primary cause of such unfairness [2],
[3], [6], [7], [8], [22]. There are mainly three different
approaches to improve fairness [7], i.e., using 1) resource
usage (RUM), 2) resource performance (RPM) and 3) overall
performance (OPM) as a metric.

Techniques using RUM try to allocate the amount of
demanded resources to applications. Antonopoulos et al.
[13] designed cache partition techniques to make sure
that high-priority applications get more cache space.
Sherwood et al. [15] proposed fair queuing on the memory
controller to ensure that each thread receives its allocated
fraction of memory bandwidth. However, providing all
applications with same amount of resources does not nec-
essarily produce best performance because the demand
for resources is highly application-dependent. Techniques
using RPM try to guarantee the applications a certain
level of resource performance. Mutlu and Moscibroda
designed a memory scheduling policy to let equally-
weighted applications have the same increase in memory-
related stall time [6]. Fedorova et al. [3] proposed a thread
scheduling policy to let the threads have similar miss rates
on shared cache. However, other complementary techniques
are still needed to bridge the gap between the resource-
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Fig. 9. Train ratio comparison of train unlimited and cross-run when input
set changes across the 20 runs.

performance and the observed application-performance (e.
g., IPC). By comparison, FPS targets application performance
directly using an objective similar to OPM.

For OPM and RPM, the most challenging task is to esti-
mate what the performance would be if an application runs
alone while it actually runs concurrently with others. For
example, in [6], authors added special hardware counters
and triggers in memory controllers to estimate the memory
stall time when the application runs alone. Similar hard-
ware support is used in their follow-up work [2], in which
the shared-cache contention is also measured. Because of
the complicated mechanisms in memory devices and their
interactions with the processor pipeline, precise analytical
modeling of their performance is very difficult. In this
paper, to estimate what an application’s performance would
be if it runs alone, we used a totally different runtime
approach: we make use of the phase behavior of an applica-
tion and estimate IPCy,,. directly by constructing a low-
contention environment for it. Our approach is software
based and does not need any special hardware support.

In order to provide system fairness, most prior work
manages the shared resources and changes the behavior of
applications when they share the resources. In this paper,
we use a process scheduling approach to deal with the
problem [23]. Although contention-aware thread schedul-
ing policies have been widely studied, most of them focus
on system throughput [4], [5], [13], [14]. A fairness-oriented
thread scheduling policy was proposed in [3]. It targeted
shared cache contention and used RPM as its objective. In
[12], authors came up several mechanisms for supporting
the notion of priority while still allowing symbiotic job-
scheduling [11]. Our approach also can be easily extended
to support different priorities by defining WeightedProgress.
By comparison, FPS mainly targets main memory conten-
tion, which has been identified as the most dominated
cause for an application’s performance degradation [1],
and it uses OPM.

We conduct additional comparisons to [24], [25], [26],
[27], [28], [29]. Details are presented in the supplemental
materials (Section 6), which is available online.

8 CONCLUSION

We proposed a fair progress scheduling policy (FPS) to pro-
vide performance fairness on shared-memory multiproces-
sors. The basic idea is that, given the same amount of CPU
time, if an application did less effective work than others
because it suffers bigger slowdown due to resource conten-
tion, FPS would allocate extra time quanta to it.
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We define the forward progress to quantitatively mea-
sure the effective work of an application. The challenge
when calculating the progress at runtime is to estimate
the run-alone performance in each executed quantum
while the application is actually running simultaneously
with others. Our solution is to classify the execution
quanta of application into phases, and obtain their
estimated /PC,,n. by identifying or constructing the low-
contention co-scheduled applications. We then extend the
performance information to other quanta that belong to
the same phase in order to help estimating their progress.

We also proposed cross-run optimization to alleviate the
overhead of online training.
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