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Abstract
Cross-ISA (Instruction Set Architecture) system-level vir-
tual machine has a significant research and practical val-
ue. For example, several recently announced virtual smart
phones for iOS which run smart phone applications on x86
based PCs are deployed on cross-ISA system level virtual
machines. Also, for mobile device application developmen-
t, by emulating the Android/ARM environment on the more
powerful x86-64 platform, application development and de-
bugging become more convenient and productive. However,
the virtualization layer often incurs high performance over-
head. The key overhead comes from memory virtualization
where a guest virtual address (GVA) must go through multi-
level address translation to become a host physical address
(HPA). The Embedded Shadow Page Table (ESPT) approach
has been proposed to effectively decrease this address trans-
lation cost. ESPT directly maps GVA to HPA, thus avoid the
lengthy guest virtual to guest physical, guest physical to host
virtual, and host virtual to host physical address translation.
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However, the original ESPT work has a few drawbacks.
For example, its implementation relies on a loadable kernel
module (LKM) to manage the shadow page table. Using
LKMs is less desirable for system virtual machines due to
portability, security and maintainability concerns. Our work
proposes a different, yet more practical, implementation to
address the shortcomings. Instead of relying on using LKMs,
our approach adopts a shared memory mapping scheme to
maintain the shadow page table (SPT) using only “mmap”
system call. Furthermore, this work studies the support of
SPT for multi-processing in greater details. It devices three
different SPT organizations and evaluates their strength and
weakness with standard and real Android applications on the
system virtual machine which emulates the Android/ARM
platform on x86-64 systems.

Categories and Subject Descriptors C.0 [General]: Sys-
tem Architectures; D.4.2 [Operating Systems]: Storage
Management—main memory, virtual memory

General Terms Management, Measurement, Performance,
Design, Experimentation, Security

Keywords memory virtualization; cross-ISA virtualiza-
tion; Embedded Shadow Page Table; HSPT; Hosted Shadow
Page Table; practical implementation; loadable kernel mod-
ule; Security; Portability

1. Introduction
System virtualization has regained its popularity in recent
years and has been widely used for cloud computing [15,
17]. It allows multiple guest operating systems to run si-
multaneously on one physical machine. The guest operating
systems (OS) on such virtual machines are agnostic about
the host OS and hardware platforms. System virtualization
can be divided into same-ISA and cross-ISA categories de-
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pending on whether the guest and the host are of different
instruction-set architecture (ISA). Same-ISA system virtual-
ization is commonly used for server consolidation, for exam-
ple, VMware Workstation [13], VMware ESX Server [23],
XEN [8], KVM [25] and VirtualBox [6] support same-ISA
system virtual machines. Cross-ISA system virtualization is
also important and commonplace. For example, applications
and OSes compiled for one ISA can run on platforms with
another ISA. Recently announced virtual smart phones for
iOS which run Apple iPhone applications on x86 based PCs
are based on cross-ISA system level virtual machines. The
Android Emulator [2] emulates the Android/ARM environ-
ment on the x86-64 platforms is yet another example, it of-
fers great convenience in development and debugging to An-
droid application developers. This paper focuses on the per-
formance of cross-ISA system virtual machines.

QEMU [5] is a very commonly used cross-ISA virtual
machine. Since the ISA of the guest (e.g. ARM) is different
from that of the host (i.e. x86 based PC). Dynamic Binary
Translation (DBT) is often used to speed up emulation [18].
One challenge in system virtualization is the large memory
virtualization overhead where the virtual address of the guest
must be mapped to the guest physical address, then the guest
physical address be mapped to the host physical address
during program execution (as shown in Figure 1(a)). For
example, on average QEMU spends 23%∼43% of the total
execution time in memory translation for SPEC CINT2006
benchmarks when running in system mode emulation [14].
So optimizations to minimize such memory virtualization
overhead are the key to enhance the performance of the
system-level emulator.

Hardware-assisted memory virtualizations, such as Intel
Extended Page Tables [19] and AMD Nested Paging [9], are
effective ways to reduce this overhead for same-ISA virtual
machines. But they do not support cross-ISA system virtu-
alization. Software-based memory virtualization (e.g. Soft-
ware MMU) has been used in existing system virtual ma-
chines, such as QEMU. However, software MMU is one
major contributor to sluggish simulation. Some recent ap-
proaches, such as the Embedded Shadow Page Table (ESPT)
[14] exploits a combination of software MMU and hardware
MMU to significantly cut down the memory virtualization
cost. ESPT utilizes the larger address space on modern 64-
bit processors and creates a loadable kernel module (LKM)
to embed the shadow page entries into the host page table.
Those shadow page table (SPT) entries are used to store the
mapping between guest virtual address and host physical ad-
dress. This table can be used by the hardware walker to re-
solve TLB misses. In [14], ESPT has achieved significant
speed up (>50%).

However, the original ESPT work has a few drawbacks.
For example, its implementation relies on a LKM to man-
age SPTs. Using LKMs is less desirable for system virtu-
al machines due to portability, security and maintainability

concerns. For instance, 1) most of LKMs use the internal
kernel interface and different kernel versions may have d-
ifferent interfaces. For example, there have been 47 Linux
kernel versions after version 2.0 and 12 of them had updated
MMU-related modules. If the LKM approach is adopted to
manage ESPT, we would have to update the kernel modules
of ESPT management for 10 out of the 12 kernel version-
s. So it would be difficult to have one LKM supporting all
kernel versions. 2) To enforce security, modern OS only al-
lows the user who has root privilege to load LKMs. So the
original ESPT can only be used by the privilege users. We
believe it is important to allow all users to have access to
system virtual machines. This is the case for many Android
application developers. 3) Using LKMs, the kernel would be
less secure. For example, for the Linux kernel, many kernel
exploits have been reported, and often these exploits attack
LKMs instead of the core kernel [16]. CVE is a list of infor-
mation security vulnerabilities and exposures provided for
public [3]. In the 306 Linux kernel vulnerabilities listed on
CVE from January 2013 to November 2014, 112 vulnerabil-
ities are located in the core kernel, while 194 vulnerabilities
are in LKMs or drivers.

The main reason for using LKMs in ESPT is to operate on
the SPT which is created and maintained at privileged level.
We divided the operations on SPT into three types: creating
SPT, synchronizing with guest page table (GPT) and switch-
ing SPT for different processes. The application scenario of
the first type is that when the guest creates a new process,
we should create a new SPT accordingly. The second is that
because SPT is the shadow of the GPT, we must synchro-
nize the SPT with the GPT to ensure consistency. The third
is that when the guest switches process, the emulator should
also switch to its corresponding SPT. Based on these three
types of operations, we have come up with a different imple-
mentation to manage SPTs without using LKMs. To distin-
guish our new implementation from the original ESPT, we
call our approach “Hosted Shadow Page Table” (HSPT). H-
SPT uses three methods to accomplish these operations with
no LKMs. First, it uses a portion of the host page table as
SPT to accomplish the operation of creating SPT. Second,
it uses the shared memory mapping scheme where multiple
virtual pages can be mapped to the same physical page to
synchronize the SPT with GPT. Third, it uses Shared SPT to
handle multi-processing in guest OSes. As for Shared SPT,
it has also investigated on three variations for performance
improvements.

The main contributions of this paper are as follows:

1. Proposed a practical implementation of ESPT to speed up
cross-ISA system virtual machines without using load-
able kernel modules thus avoid the accompanying porta-
bility, usability and security problems.

2. Proposed an efficient synchronization mechanism be-
tween SPT and GPT based on shared memory mapping
methods.
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Figure 1. Address translation of (a) Traditional memory
virtualization, (b) Shadow Page Table and (c) Embedded
Shadow Page Table

3. Proposed and evaluated three SPT organizations, includ-
ing Shared, Private and Group Shared SPT to handle
multi-processing in guest OSes. A guideline on how to
select each variation is provided.

4. All schemes proposed and studied have been carefully
implemented and evaluated on a system emulator which
emulates the Android/ARM environment on the x86-
64 platform. Experiments with SPEC CINT2006 bench-
marks and multiple practical Android applications show
that our technology can achieve comparable performance
as the original ESPT while making the system emulator
more portable, secure and maintainable. With our new
SPT organization varations, our approach can efficiently
handle applications with multi-processing.

The rest of the paper is organized as follows: Section 2
gives our motivation; Section 3 focuses on the framework
and details of HSPT; Section 4 presents the settings of our
experiment and results. Section 5 briefly discusses related
work and Section 6 concludes this paper.

2. Motivation
Memory virtualization is an important part of system virtu-
alization. In a hosted system virtual machine, such as KVM
[25] based virtual machines, multiple guest OSes and the
host OS share the same machine physical memory and are
isolated from each other. Consider the x86 platform, as an
example, if running as a standalone machine, the OS needs
provide the page table which maps the Virtual Address (VA)
to the Physical Address (PA). The hardware MMU uses TL-
B to speed up page table lookup. When a TLB miss occurs,
a hardware table walker searches the page table to find the
page table entry, and insert it into the TLB. If running on a
virtual machine, the PA of a guest machine is not the true
machine PA. It is actually mapped to the virtual address of
the host machine, so another level of translation is required.
Figure 1(a) shows the address translation of traditional mem-

Figure 2. Target translation codes of guest memory access
instruction with (a) Software MMU, (b) ESPT and HSPT.
Target translation codes in (c) HSPT are generated by gener-
al translation method. Target translation codes in (d) HSPT
are generated by optimized translation method.

ory virtualization. A virtual machine usually allocates a large
chunk of virtual space to simulate the guest physical mem-
ory, we call this space “Simulated Guest Physical Space”
(SGPS) (as indicated in the figure). When the guest accesses
the machine memory, it goes through three-level of address
translation. It works as follow: When the guest code access-
es a guest virtual page P1, it goes through the guest page
table (GPT) to obtain the guest physical page P2 and then
look up the internal memory mapping table (MMT) which is
created for recording the location of guest physical memory
at the host virtual address to find the corresponding host vir-
tual page P3. Next, it searches the host page table (HPT) to
obtain the host physical page P4. After these three steps, the
guest can finally access the machine memory.

For same-ISA system virtual machines, a Shadow Page
Table (SPT) [10] is often created, which maps the guest VA
to the machine physical address. When a guest process is
running, the hypervisor switches the HPT to this SPT so that
only one level of address translation is performed. Figure
1(b) shows the traditional SPT. When running the guest
code, the page table base pointer, such as the CR3 register
in x86, will be changed to the SPT and then it can directly
use hardware MMU to accomplish the address translation.

For cross-ISA system virtual machines, such memory
translation process is simulated in software, so it is often
called “software MMU”. QEMU [5] uses software MMU to
translate a guest virtual address (GVA) to the host virtual
address (HVA), and let the host machine to handle the HVA
translation afterwards. In QEMU, a software-TLB contain-
s the recently used map from GVA to HVA. Each memo-
ry access instruction of the guest is translated into several
host instructions by the internal dynamic binary translator
[5] of QEMU. Suppose ARM-32 is the guest and x86-64 is
the host, an ARM memory load instruction “ldr R0,[fp]” is
translated into several host instructions with software MMU,
as shown in Figure 2(a). These generated host instructions
are used to search the software-TLB and can get the target
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HVA if hit. If miss, the GVA will go through the aforemen-
tioned three-level of address translation (i.e. P1 to P2, P2 to
P3 and P3 to P4). In other words, to emulate a single memory
access instruction of the guest, 10 to 20 native instructions
will be executed when the search hits in the software-TLB
or hundreds of instructions to execute when it misses. How-
ever, the advantage of using software MMU is platform and
OS independent, thus more portable.

Embedded Shadow Page Table (ESPT) proposes to adopt
the SPT approach from same-ISA virtual machine. Adopting
SPT directly in cross-ISA machines is much more difficult
than it initially looks. This is because the guest architecture
is emulated. For example a guest register is emulated as a
host memory location, so when running the guest code, it
needs to access both the guest addresses and the host ad-
dresses in the same translated code block, each requires a
different page table. So frequently switching back and forth
between SPT and HPT is needed. This excessive overhead of
page table switching is intolerable, therefore, ESPT proposes
to embed the SPT into the HPT to avoid such table switching
[14]. In ESPT, LKMs are used to create and manage embed-
ded shadow page entries in HPT (as shown in Figure 1(c)).
The consistency between GPT and SPT is also maintained
by using LKMs. ESPT first sets all the 4G memory space
dedicated for the shadow page entries as protected, when
certain pages are accessed, SIGSEGV will be triggered to
invoke a registered signal handler. In the signal handler, ES-
PT will use the fault GVA to go through the aforementioned
three-level of address translation to find HPA and then cre-
ate the mapping from GVA to HPA into the SPT. Finally, it
resumes from the fault instruction. ESPT maintains a SPT
for each guest process, when the guest process switches, E-
SPT will use LKMs to set the host directory page table base
pointer for the lower 4G space to the targeted SPT. For exam-
ple, Figure 1(c) shows that “Embedded Shadow Page Entry”
points to a SPT, when the guest process switches, ESPT will
set “Embedded Shadow Page Entry” to point to the guest’s
new SPT.

Taking ARM-32 as guest and x86-64 as host, as shown
in Figure 2(b), we can see that ESPT will translate one
guest access memory instruction to a ‘mov’, a ‘jmp’ and
several Software MMU instructions. There are two types
of page faults in this approach: one is shadow page fault
and another is guest page fault. Shadow page fault occurs
when the requested GVA is not in the SPT. It is handled by
LKMs. A guest page fault is handled by Software MMU.
Those instructions work as follow: the ‘mov’ instruction will
first try to access the GVA by using SPT. If hit in SPT,
the obtained HVA will go through the hardware MMU to
execute and then jump to execute the next guest instruction.
If miss in SPT, LKMs will be invoked to fill the SPT and
resume execution, and if guest page fault occurs, ESPT will
replace the ‘jmp’ with ‘nop’ and execute Software MMU
instructions to fill the GPT.

ESPT can significantly reduce the address translation
overhead. SPEC CINT2006 benchmark results indicate that
ESPT achieves an average speed up of 1.51X in system mod-
e when emulating ARM-32 on x86-64 and a 1.59X for em-
ulating IA32 on x86-64 against the original software MMU
[14].

ESPT and Software MMU both have their own strength
and weakness. To avoid the shortcomings of relying on
LKMs, we have come up with a different way to incorpo-
rate the idea of SPT. It is non-trivial to avoid using LKMs
for two reasons: 1) Our new approach must be able to cre-
ate and maintain SPT in kernel space without using LKMs;
2) Multi-processing emulation with the same address space
must be supported by our method. The technical details of
HSPT will be described in the following section.

3. The Framework of HSPT for Cross-ISA
System Emulation

Similar to ESPT, our HSPT focuses on the widespread sce-
nario where the virtual space of the host is larger than the
guest, such as ARM 32bit to x86 64bit. This scenario is very
common to system virtualization since the 64bit architec-
ture is more powerful in both functionality and performance,
making it an ideal host machine. Taking advantage of the
larger host’s address space, we can use a portion of the host
page table as our SPT to avoid frequent switching between
the shadow and the host page table. We also believe our ap-
proach could be applied to the scenario where the guest is an
ARM 64bit architecture. The user address space of x86-64
is 256TB (48-bit). Although ARM 64bit also supports 64-bit
virtual address, the current AArch64 OS only uses 39-bit of
virtual address (512GB), so there are room left for embed-
ding SPTs.

Figure 3. Address translation and the method of creating
shadow page mapping of HSPT

Figure 3 shows the address translation process under
HSPT. We set aside a fixed virtual space called “Guest-
Dedicated Virtual Address Space” (GDVAS) from the host
virtual space (as indicated in the figure). When we set aside
GDVAS, each page in the guest virtual space is mapped to a
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page in the GDVAS. For example, the memory accesses of
guest virtual page P1 would be translated to the accesses of
host virtual page G1 in GDVAS (labelled as step 4). A tra-
ditional virtual machine would transform the accesses of P1
to the accesses of host physical page P4 after going through
GPT, MMT and HPT (step 1, 2, 3) translation steps. In our
approach, P1 is mapped to G1 with an offset which is also
the base address of the allocated GDVAS (step 4). By map-
ping G1 to P4 which was mapped from P3 (step 5), the guest
can also access data from G1. Thus we can convert the basic
translation process from P1 GPT−−−−→P2 MMT−−−−−→P3 HPT−−−−→P4 to
P1 +offset−−−−−−→G1 SPT−−−−→P4. The translation from P1 to G1 does
not need table lookup, they only differ by a fixed offset.
Compared with the basic memory translation, our approach
can reduce three rounds of table lookup down to only once.

Figure 2(c, d) show the general and optimized transla-
tion where the optimized translation is only applicable to the
platform with segment registers. Since there is only a con-
stant offset from P1 to G1, when translating a guest memo-
ry access instruction, we just add the GVA (e.g. P1) to the
base of GDVAS. As shown in Figure 2(c), an ARM memory
instruction ‘ldr R0,[fp]’ is translated into ‘add %esi, %edi,
GDVAS base’ and ‘mov %eax, (%esi)’, where GDVAS base
represents the base of GDVAS. Moreover, when the host has
the support of segment registers, we can utilize one segmen-
t register to hold the base address of GDVAS and optimize
the translation. As shown in Figure 2(d), the segment register
‘gs’ is used to finish the first-layer address translation from
P1 to G1. After that, hardware MMU will finish the trans-
lation from G1 to P4 automatically. HSPT based translation
can reduce the address translation process from 10 to 20 na-
tive instructions down to only one or two, thus eliminating
most of the address translation overhead.

So far, we have introduced the framework of HSPT, but
there are still several issues to address:

1. We had described the memory accesses to guest virtual
page P1 can be transformed to accessing the host virtual
page G1. Section 3.1 will discuss how to create the map-
ping from G1 to P4.

2. SPT keeps the direct maps from guest virtual address
to host physical address, so it must keep pace with the
guest page table. Section 3.2 will discuss a mechanism to
maintain the consistency between SPT and GPT.

3. When a guest process switch happens, both the tradition-
al SPT and ESPT must also change the SPT. Section 3.3
will discuss three new SPT variations in our HSPT to sup-
port the guest multi-process.

3.1 Creating Shadow Page Mapping
As shown in Figure 3, creating shadow page mapping means
creating the mapping from G1 to P4 into the SPT. After basic
translation process, we know that P3 is mapped to P4. What
we need to do is to make G1 to share P4 mapped from P3.

HSPT uses a mechanism which maps two or more virtual
pages to the same physical page to accomplish this shared
operation. In the virtual machine initialization phase, the
virtual machine allocates a host virtual space which is the
so-called “SGPS” space (as indicated in the figure) and used
as the guest physical space. When doing this, we use the
“mmap” system call with ‘MAP SHARED’ flag to map this
space to a file. Then when the virtual machine starts to run
and needs to create the SPT entry for G1, what we need to do
is to map G1 with proper protection to the same host physical
page P4. This is done by using the “mmap” system call and
map G1 to the same offset F1 of the target file with P3. After
this, the host OS will automatically map G1 and P3 to the
same host physical page P4 with isolated page protection.

3.2 Consistency between HSPT and GPT
To make sure each GPT has a correct SPT and the entries
in SPT are not outdated, we need to capture the creation
and modification of GPT and then set the respective SPT
mappings. The main reason for GPT changes include: 1)
creation of a new GPT by guest OS due to initiating a
new process; 2) modification of GPT by guest OS. These
two scenarios are discussed respectively in the following
sections.

3.2.1 Guest Page Table Created by Guest OS
When the guest OS creates a process, we need to correspond-
ingly prepare a SPT for it. Since there are so many entries in
each guest page table and only a small portion of these en-
tries are actually used, it would be inefficient to synchronize
every entry at this time. Therefore, we adopt a lazy synchro-
nization approach which uses the SIGSEGV signal to inform
which entry needs update and is similar to ESPT.

Figure 4. Signal notification mechanism for creating HSPT
and synchronizing shadow page entries

Signal based Lazy Synchronization When a new SPT is
created, we do not create mappings for all the entries. In-
stead, we only set the page protection value of all the entries
as ‘NONE’. Thus when a shadow page entry is accessed at
the first time, the SIGSEGV exception will be raised and we

57



Algorithm 1 SEGV signal handler
Input:

Faulted host virtual address, SegvAddress;
The base of current GDVAS, BaseAddress;
The current guest page table, GPT ;
The Memory Mapping Table, MMT ;

Output:
None;

1: Host virtual page G1 = SegvAddress&PAGE MASK;
2: Guest virtual page P1 = G1−BaseAddress;
3: if Is guest page fault then
4: Jump to execute guest exception handler code;
5: else
6: Walk the GPT and look up the MMT to find host

virtual page P3;
7: Find P3’s corresponding file page F1;
8: Map G1 to the same file page F1;
9: Return to restart the faulted insruction;

10: end if

have the chance to synchronize for this entry. The execu-
tion flow of the SIGSEGV signal handle is shown in Figure
4 and the algorithm of signal handler is shown in Algorith-
m 1. When the guest first accesses the host virtual page G1
(labelled as step 1), a SIGSEGV signal will be raised since
the page is protected in SPT (step 2). The host kernel will
throw a signal to the virtual machine process and the control
goes into our previously registered SIGSEGV signal han-
dler (step 3). The handler will first compute the guest virtual
page P1 (indicated in signal handler) and then walk the GPT
to decide whether it is caused by the guest page fault or the
inconsistency of SPT. If it is caused by the guest page fault,
the handler will jump to execute the guest exception related
handler. Otherwise, this exception is caused by the inconsis-
tency of SPT and we should use the synchronization method
mentioned in Section 3.1 to map G1 (Step 4) and the host OS
will update the SPT entry automatically (Step 5). After this,
the signal handler returns and resume the fault instruction.

3.2.2 Guest Page Table Modified by Guest OS
When the guest OS is running, all the page tables of guest
processes could be modified at any time. If we monitor the
whole guest page tables’ memory space, the overhead would
be excessive. Therefore, we intercept TLB-invalidation in-
structions to capture which entry requires synchronization.
This approach is similar to the mechanism used in ESPT.
Intercepting the Guest TLB-invalidation instructions When
the guest OS updates a page table entry, it should inform
TLB to invalid the corresponding entry to ensure the con-
sistency between the GPT and the TLB. Therefore, we can
intercept TLB-invalidation instructions to capture the GPT
updates indirectly. When we intercept these instructions, we
do not modify the shadow page entry to the newest mapping,
instead, we just clear the outdated mapping in SPT by using

“mmap” system call with ‘PROT NONE’ flag. When such
pages are accessed, a SIGSEGV signal will be raised and we
could synchronize at that time.

3.3 Support for Multi-Process
Multi-processing is very common in real Android apps.
Without proper support for multi-processing, the cross-ISA
system virtual machine using HSPT will have inadequate
performance. We investigate three variations of SPT organi-
zations: Shared SPT which makes all the guest process shar-
ing one single SPT, Private SPT which provides a separate
SPT for each guest process and Group Shared SPT which
makes a group of the guest processes sharing a SPT. These
three methods will be detailed in the following subsections.

3.3.1 Shared SPT
Shared SPT represents that all the guest processes uses the
same SPT. It works as follows: When the emulator detects a
guest process is switching out (this can be detected by mon-
itoring the page table pointer), we should clear the SPT by
using “mmap” system call with ‘PROT NONE’ flag to get
them ready for the next switched-in process. Figure 5 gives
the illustration of this process. When guest process A first
accesses a page, a SIGSEGV signal will be raised due to the
inconsistency and we will update the corresponding entry in
SPT(labelled as step 1). Then when the guest OS switches
process A out and B in(step 2), we clear the SPT entries be-
long to process A to get ready for the new process B(step 3).
After some time, process B would also be switched out(step
4) and process A back to active(step 5). Similarly, we clear
the SPT entries of process B(step 6). When process A first
accesses its SPT, SIGSEGV signals will be raised and SPT
will be properly synchronized.

Figure 5. Shared SPT for handling guest multi-process

From this illustration, we can see that in the Shared SPT
strategy, when a process is switched back again, the infor-
mation of the filled SPT entries in the last timeslot is lost
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and the SPT of the switched-in process has to be warmed up
again. Such repeated filling would result in a significant in-
crease in the number of SIGSEGV and the runtime overhead.
To reduce such repeated signal, we explored an optimization
strategy called “Prefill Optimization”.
Prefill Optimization Consider temporal locality that the en-
tries accessed in the past may likely be accessed again in the
future, we choose to prefill SPT entries when a process is
switched in. Because the page table entries could be changed
during the time of switched out, we only record which en-
tries were accessed but not with full detailed information.
Moreover, the number of filled entries will accumulate as the
process keeps executing and only a small part of the entries
filled may be accessed in this timeslot, so if we prefill all the
past entries at the resumption of each process, the overhead
incurred may exceed the benefit. Based on this observation,
we set a window for each guest process. Each time a new
SPT entry is synchronized, we’ll record the index of this en-
try in the window. When the window is full, it is flushed to
restart recording. After done this, when a certain process is
switched in, we’ll first synchronize all the entries recorded
in this processs window. The impact of the window size to
performance will be evaluated in the experiment section.

3.3.2 Private SPT
Prefill optimization can reduce the overhead of warming
up in Shared SPT during frequent guest process switches.
However, the prefill operation itself could be expensive. If
the host machine has enough virtual memory space, the
virtual machine could be benefit from Private SPT to avoid
page table refill. As mentioned before, each SPT is bound
to a separate GDVAS. Private SPT would consume a greate
amount of virtual address space.

Figure 6. Private SPT for handling guest multi-process

Setting write-protection to the switched-out GPTs is a
common but expensive method to monitor the modification
of GPT [24]. To reduce this overhead, we again intercept
the TLB-invalidation instructions to identify modified page
entries. Consider x86 and ARM, as an example, they use
PCID (Process Context Identifier) [4] and ASID (Address
Space Identifier) [1, 20] respectively to identify TLB entries

for each process. We call this kind of identifier as “Context
Identifier” (CID). Same virtual address of different process-
es can be distinguished in the TLB due to CID. Based on
this, when the process switching happens, there is no need
to flush the whole TLB.
Principles of TLB structure with CID Under this struc-
ture, OS must obey the following principles: 1) At the time
of process switching, CID register which contains the CID
of the current active process should be modified. 2) When
the OS modifies the page table, TLB must be informed with
the CID and the address. 3) There are a limited number of
available CIDs. We assume this number is N. So when the
number of processes exceeds N, the sharing of CID between
new processes and certain old processes would happen.
Management of Private SPTs Based on the principles
above, we can tell which entry of a process, and the pro-
cess CID is modified from the TLB-invalidation instruction-
s. Therefore, when setting up each private SPT, we choose
to bind each SPT with a CID (as shown in Figure 6) rather
than the process ID so that we can use the TLB-invalidation
instructions to maintain consistency between SPT and the
corresponding guest page table.
Switching SPT As mentioned above, the CID register
would be updated when the guest process switch happen-
s. Since SPT is correlated with CID, we should also switch
SPT at this time. Before describing activities involved in SP-
T switching, there is an issue needs to be addressed about
the instruction translation which is shown in Figure 2(c). S-
ince the translated instructions may be shared by different
guest processes, when each process has a different SPT, in
order to make each process access their own data through
the same translated native instructions, we need to load the
GDVAS base address of the current executing process be-
fore adding it to GVA. This base address can be stored in
a global memory area and switched when the guest process
is switched. Similarly, when the host has the segment regis-
ter support, there is no need for this load operation and we
can simply use the segment register to contain this base and
modified this register when the guest process switches in.
Based on the above, when the guest process switches what
need to be done is only modifying the active GDVAS base
address which can be kept in a global memory area or in the
segment register on certain host platforms.

3.3.3 Group Shared SPT
Although Private SPT can avoid frequent SPT-clear problem
of Shared SPT, it consumes too much host virtual space. Tak-
ing ARM as the guest, a virtual space size of 256*4G=1TB
(upto 256 different processes allowed) would be needed.
There may not be enough host virtual space. To address this
problem, we proposed Group Shared SPT that the number of
SPTs do not based on the available CID. Instead, we set up
a fix number of SPTs depending on the size of host virtual s-
pace. Each time a process switches in, if this process already
has a corresponded SPT, then we’ll just use this SPT. Other-
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Figure 7. Group Shared SPT for handling guest multi-
process

wise, if there’s still an available SPT, it will be allocated. If
not, we’ll pick up one from the SPT pool based on certain
strategies. This specific strategy is the LRU (Least Recent-
ly Used) algorithm which chooses the process which is least
recently scheduled and clear its SPT for this new process. In
Group Shared SPT, a group of processes share the same SP-
T. It is a compromise between Shared SPT and Private SPT.
As long as the virtual space is sufficient, it works as Private
SPT, when the virtual address space is short, it works like
Shared SPT for a small number of processes.

Figure 7 shows the framework of Group Shared SPT.
We can see that SPT is allocated from a GDVAS Table
rather than correlated with CID as used in Private SPT.
When the new switched-in process has no corresponding
SPT and need to allocate a new one from the GDVAS table,
we also adopt the prefill optimization used in Shared SPT.
The performance under different number of SPTs will be
evaluated in the experiment section.

Figure 8. Example of managing shadow page tables with
Group Shared SPT

Figure 8 shows an example of how Group Shared SPTs
are managed during process switching. In this example, we
assume the virtual machine only allocates two GDVASs
from the host. When the guest runs the first process with
CID 3, GDVAS 0 will be allocated to this process. The
current base is set to Base 0 and the LRU queue is updated
accordingly (labeled as step 1). Next, when guest switches
to the process with CID 5, GDVAS 1 will be allocated to

this process. The current base is set to Base 1 and the LRU
queue is updated accordingly (step 2). Next, when guest
switches back to the process with CID 3, the current base
is set back to Base 0 and the LRU queue updated (step 3).
Next, when the guest switches to another process with CID
9, no free GDVAS are available, so the virtual machine must
select one GDVAS as victim. In this case, GDVAS 1 will
be selected since it is least recently scheduled according to
the LRU queue. Hence, GDVAS 1 will be allocated to this
newly switched-in process (step 4).

4. Experimental Evaluation
4.1 Experimental setup
We implement HSPT based memory virtualization frame-
work on an Android Emulator which uses a modified QE-
MU to emulate the Android/ARM environment on the x86-
64 platform. The host experimental platform is Intel E7-
4807 machine with 1064MHZ, 15G RAM, and Ubuntu
12.04.3 LTS(x86-64). We use Android 4.4(Kernel: 3.4.0-
gd853d22nnk) as our guest and run test cases in guest VM.

Two suites of programs we selected to run as the guest
applications are SPEC CINT2006 benchmarks and Android
applications.
SPEC CINT2006 benchmarks SPEC CINT2006 is a CPU-
intensive benchmark suite, stressing system’s processor and
memory subsystem. The source code of these benchmarks
uses the GNU standard lib, but Android uses its own native
lib. So in our experiments, we use static linked benchmarks.
We only test the train input dataset instead of ref due to the
limitation of available memory. Android Emulator uses QE-
MU which can only provide a maximum of 1GB of memory
for guest when emulating the ARM platform, some bench-
marks of CINT2006 with ref input require more than 1GB
of memory during execution.
Android applications In order to test whether HSPT can
enhance the actual user experience, we also test the Android
system boot and applications start-up time. We select some
generally used apps, including Clock, Calendar, Messages,
Calculator, Phone and Contacts. The reason why we test the
app start-up time is that running apps needs user interaction,
it is difficult to test precisely. The startup latency is an im-
portant aspect to consider in many applications, especially
for embedded systems. At the startup of an Android applica-
tion, intensive interaction with the OS will occur to request
for system resources. Many operations in the startup-phase
might also get used afterwards. To avoid averaging with test-
ing outliers, we ran each application test multiple times and
take the average of three middle scores as the final result.

4.2 Evaluation of Shared SPT
4.2.1 Shared SPT without prefill optimization
Figure 9(a) shows the performance of the CINT2006 bench-
marks. The x-axis is the benchmarks and y-axis is the execu-
tion time in seconds. Figure 9(b) shows the speedup. We can
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Figure 9. (a) Execution time and (b) Speedup by Private
SPT and Shared SPT against Software MMU for SPEC
CINT2006 benchmarks

see that our Shared SPT without prefill optimization can en-
hance the performance of Android Emulator for each bench-
mark and can achieve a 1.63X speedup on average.

4.2.2 Shared SPT with Prefill Optimization
In order to test the impact of the prefill optimization with d-
ifferent window sizes on the performance, we set ten values
(shadow page entries) including 0, 100, 200, 300, 400, 500,
600, 700, 800 and 900 for window size. Figure 10 shows
the speedup achieved by prefill optimization with differen-
t window sizes against Shared SPT without this optimiza-
tion. The x-axis represents different window sizes and the
y-axis is the speedup against shared SPT without prefill op-
timization. We can see that with increasing window size, the
speedup of Shared SPT firstly keeps going up and then starts
to decrease when the window size exceeds 300 entries. At
window size 300, we have achieved a maximum speedup of
1.68X (1.033*1.63X).

Figure 10. Speedup by prefill optimization with different
window size against Shared SPT without prefill optimization

To explain the reason of the drop of performance when
the window size exceeds 300, we did a profile of the number
of SEGV exceptions for uninitialized page table entries and

Figure 11. The number of Uninitialized SEGV and syn-
chronized shadow page entries with different window sizes

synchronized SPT entries. Figure 11 shows the result, the x-
axis is different window sizes and y-axis is the ratio against
window size 0 (that also represents the Shared SPT without
prefill optimization). There are two types of SEGVs in HSPT
that one is the SEGV due to uninitialized SPT entries and the
other is raised by guest page faults. ‘Uninitialized SEGV’
represents the first type of SEGV and ‘Synchronized Entries’
represents the number of SPT entries synchronized including
activities from both the prefill operation and the SIGSEGV
signal handling. The ‘Proportional decrease in Uninitialized
SEGV’ legend is computed by the following formula:

BaseSEGV num − Current SEGV num

BaseSEGV num

, where ‘Base SEGV num’ and ‘Current SEGV num’ repre-
sent the number of ‘Uninitialized SEGV’ under window size
0 and the current window size respectively. The legend of
‘Proportional increase in Synchronized Entries’ is comput-
ed similarly. We can see that the two ratios have minuscule
differences when window size is less than 300. But when
window size exceeds 300, the gap between these two ratios
start to diverge which means that many prefilled SPT entries
are not used before this process is switched out. Since the
prefill comes with overhead, such unused prefilled entries
will be a waste. When this overhead exceeds the profit, the
performance goes down.

4.2.3 Shared SPT for Android Practical Applications
Figure 12(a) shows the experimental result of Android sys-
tem boot and applications start-up time. The x-axis is the
Android system and applications, the y-axis is the boot time
of system and the start-up time of applications in second-
s. Figure 12(b) shows the speedup. The ‘Shared SPT with
best prefill optimization’ is the prefill optimized Shared SPT
when window size is 300. From this figure we can see that no
matter whether we adopt prefill optimization or not, Shared
SPT does not outperform the Software MMU for the system
boot time and start-up time of each application. For practical
Android apps, what is needed is Private SPT. Nevertheless,
prefill optimization for Shared SPT clearly outperforms ba-
sic Shared SPT on both CINT2006 and practical apps.
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Figure 12. (a) Execution time and (b) Speedup by Private
SPT and Shared SPT against Software MMU for Android
system boot and applications start-up

The different outcomes between Figure 9 and Figure 12
come from the fact that each CINT2006 benchmark needs
only one process but each Android app may need multiple
service processes. So the performance of process switching
dominates practical apps more than CINT2006 benchmarks.
In Shared SPT, frequent process switching can causes fre-
quent SPT-clear operations. So Shared SPT is not ideal for
emulating applications with multi-processing.

4.3 Evaluation of Private SPT
4.3.1 Private SPT for SPEC CINT2006 benchmarks
From Figure 9(b), we can see that Private SPT achieves an
average speedup of 1.92X against Software MMU. We can
also see that compared with other benchmarks, 429.mcf has
the largest speedup. In order to explain this, we also did
an experiment that profiled the TLB miss rates of Software
MMU. Figure 13 shows the result, the y-axis is the TLB-
miss rate. We can see that the TLB miss rate of 429.mcf is
higher than others. There are two main reasons of TLB miss
in Software MMU that one is that software-TLB needs to be
cleared each time a guest process switches out (it does not
use the ASID feature of ARM TLB) and the other is that
software-TLB is not big enough (it has only 256 entries).
Because Private SPT does not need to clear the SPT when a
guest process switches and each page in guest virtual space
is covered in SPT, so it can effectively solve the problem of

Figure 13. TLB miss ratio of Software MMU

high TLB miss rate and this explains why this benchmark
can achieve a greater speedup.

Figure 14. Impact on the performance of the total number
of SEGV with uninitialized reason

From Figure 9(b), we can also see that 429.mcf achieves
the highest speedup when comparing Private SPT against
Shared SPT. To explain the reason, we give both Private SP-
T and Shared SPT a profile of the number of SEGV due to
uninitialized reason. The results are shown in Figure 14. The
y-axis is the ratio which represents statistics of Private SPT
against Shared SPT with best prefill optimization. As we can
see from the figure, the performance improvement tracks the
same trend with the proportional decrease in Uninitialized
SEGV numbers. The benchmark 429.mcf reduces most of
the SEGV caused by uninitialized SPT entries so as to im-
prove the performance the greatest.

4.3.2 Private SPT for Android Practical Applications
From Figure 12(b), we can see that compared with Soft-
ware MMU, Private SPT has a significant performance boost
of Android emulator and can achieve an average of 1.44X
speedup for Android system and practical applications.

4.4 Evaluation of Group Shared SPT
We also evaluate the performance of Group Shared SPT with
different number of SPTs against Software MMU. Group
Shared SPT is implemented with the prefill optimization
with 300 as the window size and we test the performance
when the number of SPTs is 1, 4, 8, 16 and 32. Note that the
more SPT used, the performance would be closer to Private
SPT, but the more virtual space will be consumed. The fewer
SPT used, the performance will be closer to Shared SPT.

Figure 15. Performance of Group Shared SPT with differ-
ent number of SPTs
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The experimental result is shown in Figure 15. The x-axis
represents different number of SPTs and the y-axis is the av-
erage speed-up against Software MMU. The performance is
compared with the average speedup of Private SPT with 256
SPTs which is shown in the upper baseline. We can see ob-
viously from the figure that the performance of CINT2006
benchmarks keeps improving with the increasing number of
SPTs and when the number of SPTs exceeds 8, the perfor-
mance of Group Shared SPT is very close to Private SPT. For
Android system and applications, when the number exceeds
8, Group Shared SPT can perform better than Software M-
MU and when the number exceeds 16, Group Shared SPT
becomes competitive with Private SPT.

We can see that for CINT2006 benchmarks and Android
practical applications, 8 and 16 of SPTs would be sufficient
to obtain the performance benefit of Private SPT without suf-
fering insufficient virtual address space. Since the Android
apps need more service processes while running, they need
a larger number of SPTs than CINT2006 benchmarks.

4.5 Discussion
The observed performance of HSPT on CINT2006 is sim-
ilar to ESPT [14]. We did not compare the performance of
HSPT side-by-side with ESPT since we need to implement
the LKMs in order to reproduce the performance numbers of
ESPT in an identical experimental setup. This work does not
claim HSPT will yield greater performance than ESPT, it is
motivated for better platform portability, higher system secu-
rity, and improved usability for application developers since
non-root users can also benefit from HSPT technology. An-
other major difference is that we noticed the importance of
synchronizing SPT for multi-processing in Android environ-
ment. While Private SPT works well for multi-processing, it
may take too much virtual address space. We come up with
a Group Shared SPT approach which preserved most of the
performance gain from Private SPT without its downsides.

In this paper, we only introduce the implementation of H-
SPT on Linux OS. Actually, our HSPT can be implemented
on any host OS with shared memory mapping capability. For
example, since Windows has an API “CreateFileMapping”
[7] to implement the shared memory mapping, HSPT can
also be implemented on Windows OS.

5. Related Work
The primary memory virtualization methods for same-ISA
system-level virtual machine include the software-based
method such as Shadow Page Table (SPT) and the hardware-
assisted method such as Intel Extended Page Tables [19] and
AMD Nested paging [9]. SPT [10] has been widely used, it
maps GVA directly to HPA to avoid levels of virtual address
translations. The method to improve the performance of em-
ulator used by hardware-assisted memory virtualization is
mainly on two dimensional (2D) page walks [10] which us-

es hardware to walk both guest and nested page table to
accomplish the address translation.

Xiaolin Wang and Jiarui Zang show that neither hardware-
assisted method nor SPT can be a definite winner. SPT will
result in expensive VM exits whenever there is a page fault
that requires synchronization between the guest and shadow
page tables. Hardware assists can solve this problem well,
but compared with SPT, it has a disadvantage that the page
walk yields more memory accesses and thus longer latency
to resolve TLB misses [21, 22]. So they propose a dynamic
switching mechanism between these two methods [24].

To reduce the overhead of many memory references to
resolve TLB misses by 2D page walkers, some architectures
use a page walk cache (PWC), which is an extra hardware
table to hold intermediate translations [9, 12]. Jeongseob
Ahn and Seongwook Jin discover that nested page table sizes
do not impose significant overheads on the overall memory
usage. So they propose a flat nested page table to reduce
unnecessary memory references for nested walks. Further,
they also adopt a speculative mechanism to use the SPT
to accelerate the address translation [11]. Compared with
SPT, they eliminate the shadow page table synchronization
overheads.

There are two memory virtualization technologies for
cross-ISA system virtualization. One is ESPT [14] and an-
other is Software MMU such as the one used in QEMU [5].
ESPT embeds shadow page entries into the host page table
(HPT) to avoid frequent page table switching between SPT
and HPT. Software MMU designs a software-TLB which
contains the recently used map from guest virtual address
to host virtual address. Each memory instruction of the
guest is translated into several host instructions to search
the software-TLB. If hit, the mapped host virtual address
can be used, if miss, the emulator must go through the three-
level address translation. The advantage of Software MMU
is platform portability. ESPT can reduce the software-TLB
search time since the SPT can directly work with the hard-
ware MMU. However, ESPT uses LKMs to manage the
embedded SPT, and the use of LKMs decreases platform
portability, system usability and introduces possible security
concerns [16]. To combine these two methods’ advantage,
we propose HSPT which exploits all the advantages of ESPT
with no LKMs.

6. Conclusion
In this paper, we proposed an practical implementation of
Shadow Page Table (SPT) for cross-ISA virtual machines
without using Loadable Kernel Modules (LKMs). Our ap-
proach uses part of the host page table as SPT and rely on the
shared memory mapping schemes to update SPT, thus avoid
the use of LKMs. Our implementation and management of
the SPT avoids some shortcomings of using LKMs, making
the virtual machines more portable, usable and secure. When
test the Android emulator, we noticed the importance of re-
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ducing SPT update cost. Initially, a Shared SPT was used.
We introduced a prefill optimization to cut down the cost of
SPT updates during process resumptions. However, the best
way to support multi-processing is to use Private SPT. S-
ince Private SPT consumes too much virtual address space
(VAS), it could fail in cases where there are many processes.
So we come up with an elegant compromise, called Group
Shared SPT where a group of processes could share the same
SPT. With a given number of SPTs, limited by the available
VAS supported by the platform, if the number of process-
es is relatively small, each process can obtain its own SPT,
thus enjoy the full benefit of Private SPT. When the number
of processes increases beyond the number of SPTs, some
processes must share a SPT. So Group Shared SPT works
adaptively to balance between high performance and limit-
ed VAS. With sufficient host virtual space, our approach has
achieved up to 92% speedup for CINT2006 benchmarks and
44% improvement for the Android system boot and practical
applications start-up on the Android emulator.
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