2015 TEEE/ACM 37th IEEE International Conference on Software Engineering

ReCBuLC: Reproducing Concurrency Bugs Using
Local Clocks

Xiang Yuan':3, Chenggang Wu'*, Zhenjiang Wang!, Jianjun Li', Pen-Chung Yew*,
Jeff Huang®, Xiaobing Feng!, Yanyan Lan?, Yunji Chen' and Yong Guan®
!State Key Laboratory of Computer Architecture / 2CAS Key Laboratory of Network Data Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{yuanxiang,wucg,wangzhenjiang,lijianjun,fxb,lanyanyan,cyj} @ict.ac.cn
3University of Chinese Academy of Sciences, Beijing, China

4Department of Computer Science and Engineering, University of Minnesota at Twin-Cities, Minneapolis, USA. yew @cs.umn.edu

SDepartment of Computer Science and Engineering, Texas A&M University, Texas, USA. jeff@cse.tamu.edu
6College of Information Engineering, Capital Normal University, Beijing, China. guanyong@mail.cnu.edu.cn

Abstract—Multi-threaded programs play an increasingly im-
portant role in current multi-core environments. Exposing con-
currency bugs and debugging such multi-threaded programs have
become quite challenging due to their inherent non-determinism.
In order to eliminate such non-determinism, many approaches
such as record-and-replay and other similar bug reproducing
systems have been proposed. However, those approaches often
suffer significant performance degradation because they require
a large amount of recorded information and/or long analysis and
replay time. In this paper, we propose an effective approach,
ReCBuLC, to take advantage of the hardware clocks available
on modern processors. The key idea is to reduce the recording
overhead and analyzing events’ global order by using time stamps
recorded in each thread. Those timestamps are used to determine
the global orders of shared accesses. To avoid the large overhead
incurred in accessing system-wide global clock, we opt to use
local per-core clocks that incur much less access overhead. We
then propose techniques to resolve differences among local clocks
and obtain an accurate global event order. By using per-core
clocks, state-of-the-art bug reproducing systems such as PRES
and CLAP can reduce the recording overheads by 1% ~ 85%,
and the analysis time by 84.66% ~ 99.99%, respectively.

Index Terms—concurrency, bug reproducing, local clock

I. INTRODUCTION

Parallel programming is essential to fully utilize the com-
pute power of multi-core processors. However, debugging
such programs has become a major challenge for software
developers because of the non-deterministic nature of parallel
programs [30]. A survey showed that it took about 73 days
to fix a concurrency bug [1]. These bugs can have serious
consequences. Well-known incidents include the Therac-25
medical accident [2] and the 2003 North American blackout
[3]. Such bugs need to be fixed as quickly as possible.

One of the main debugging techniques is Record & Replay
(RR). It faithfully records the execution interleaving and de-
terministically replays the same interleaving to reproduce bugs
[28][18][16][22][23]. The main challenge in RR techniques is
the need to reduce the significant performance penalty incurred
at runtime to record the interleaving information. Some RR

*To whom correspondence should be addressed

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.94

techniques [10][11] could incur 10X~100X slowdown. Fur-
thermore, the perturbation caused by the instrumented code
and the recording overhead may alter the interleaving sequence
of the program execution, which can obscure some bugs
especially on systems with weak memory models [4].

To address those limitations, several schemes have been
proposed to improve RR techniques by recording only min-
imally needed interleaving information, and then reproduces
the buggy interleaving with offline analysis and guided ex-
ploration. Because significantly less information is recorded,
the runtime overhead can also be substantially lower. Many
systems adopt this idea [17][19][21][14][4]. Although the
interleaving reproduced by these schemes may not be exactly
the same as the original one, they are useful in practice as the
same failure can be reproduced.

For example, PRES [14] records the global orders of some
special events, such as synchronizations, system calls, function
calls, basic blocks, and memory instructions. When a bug turns
up, it tries to analyze the unordered shared accesses. At the
function-call level, it can reproduce bugs in 10 tries mostly,
and experiences only 10%~779% slowdown [14].

Similar to other RR techniques, PRES needs to explicitly
record the global order of shared-resource accesses among
threads. They use synchronization operations to serialize the
logging to a shared buffer or incrementing a global event
counter, which are the root cause of execution slowdown [4].

To avoid such expensive synchronizations, an effective
mechanism called CLAP [4] has been proposed. Each thread
in CLAP only records its local information. During the offline
analysis, CLAP generates constraints by symbolic execution
and searches for buggy interleavings using a Satisfiability
Modulo Theories (SMT) solver, such as Yices [29] and Z3
[24]. Thus, its slowdown is only about 9%~294%. However, it
cannot get the buggy interleavings directly. Instead, it relies on
an SMT solver, which is hard to scale because such constraint
solving is NP-hard.

These systems trade off between less time in the record
phase and more time in the analysis and replay phase. It

824

is thus very desirable to find a scheme that requires each
thread to log only its own local information while allowing
a quick offline analysis to get the order of shared accesses
among threads during the replay. Such a scheme could greatly
greatly improve the efficiency of program debugging for multi-
threaded programs.

The key insight here is to take the advantage of the available
hardware per-core local clocks to reduce both the recording
overhead and the bug reproduction time. Most commercial
processors today, such as Intel/ AMD x86, IBM Power, MIPS,
and Sun SPARC, provide such clocks. Each core can access
its own local clock without any need for synchronization with
other cores. The order of shared accesses can then be inferred
accordingly. However, these local clocks are core-private. And
the hardware don’t guarantee them to be consistent, i.e.,
they may have different skews among themselves. It is quite
difficult to get the precise skews among these local clocks
(unless there is a global clock as assumed in [15]). The main
challenge here is thus to find an effective way to resolve these
local timestamps and determine a global order among them.

In this paper, we proposes a new mechanism, ReCBuLC,
to reconstruct the order of shared-memory accesses among
threads using local timestamps. This scheme can thus be
used to reproduce concurrency bugs more efficient. As a
demonstration, we apply ReCBuLC to two recent systems,
and show that it can significantly improved their performance.

Our contributions are as follows:

(1) We propose to use hardware per-core clocks available on
commercial processors to determine the global order of shared
accesses among threads that allows concurrency bugs to be
recorded and reproduced with substantially reduced overheads.

(2) We present a methodology to obtain a range of the skews
among per-core clocks. We then use a statistical scheme to
narrow down the range of clock skews to less than 10 ticks
(10 cycles) with a high confidence.

(3) ReCBuLC is applied to two recent systems and shows
that it can improve their efficiency significantly.

Following, Section II gives a motivation. Section III presents
two schemes to calculate the skews among local clocks.
Section IV applies ReCBuLC to PRES and CLAP. Section
V discusses our experimental results. Section VI covers the
related work, and Section VII concludes this paper.

II. MOTIVATION

Almost all mainstream commercial processors provide local
per-core clocks, and applications can access them for needed
timing information. For example, Intel/AMD x86 processors
provide a 64-bit Time Stamp Counter (TSC) since Pentium
family. The TSC is incremented at a constant rate with respect
to the wall-clock time. It is not affected by the frequency of
processors so as to avoid the impact of dynamical frequency
scaling [5]. Similar mechanisms exist on other processors. On
IBM Power processors, every core has a 64-bit Time Base
register [7], while its counting frequency can be changed by
software. If we record the change of counting frequency and
the frequencies before and after the change, we can convert

825

/ T1 T2 '
o -
! ' S5: W2 ‘:
1SL Wi !
! - 1 |
i ! $6:TS2<-RATC; ‘ |
1| $2:TS1<-RATC; i !
i i I |
| 1
I3 R S7: R ‘:
: " i i
|
| : S8: W3 ‘
.

!
Loy v

Fig. 1: Happen-Before Determined by Local Clock

the value of Time Base register to the real wall-clock time [7].
MIPS processors also have a similar Count Register [6], but
its size is only 32-bit. SPARC processors have a 63-bit Tick
register [8] to keep the clock cycles.

”Ideal” local clocks should have the same value at the same
time across all different cores (like a global clock). Each thread
can then locally record their own clock values when accessing
shared resources. The recorded time values in different threads
can then be compared directly to determine their global order.
They will need neither synchronization when being recorded,
nor constraints solving when being reproduced, so the overall
efficiency is improved.

An example is shown in Fig.1. T1 and T2 are two threads
bound to different cores. RATC is the instruction that reads the
per-core clock. Suppose in an execution the time stamps read
from the local clocks are TSI and TS2, respectively, and 752
is smaller than 7'SI. It means that S6 happens before S2 (i.e.
S6 < §2), we can infer that S5 < S3.

However, although hardware local clocks have existed for a
long while, no systems has used them to record and reproduce
bugs. An important reason might be that these clocks are not
”ideal”. Hardware does not ensure that the values read from
local clocks on different cores are identical at the same time.

LReplay [15] expects that future processors will provide a
global clock with a fast access time, which would dramatically
reduce the runtime overhead and log size, as it only needs to
record orders that cannot be inferred from the global clock.

Unfortunately, most commercial processors provide only
local core-private clocks that can be accessed in user mode. It
usually requires system calls to access the global clock with a
substantially higher overhead. For example, on Intel Xeon Phi,
the overhead to access its global clock is in the order of ~1600
cycles, while it only takes 6-10 cycles to access local per-core
clock. However, there are some significant challenges that need
to be resolved in order to use the low-overhead per-core local
clocks to determine the global order of shared accesses:

(1) We need to deal with the differences among different
per-core local clocks. In Fig.1, such differences are needed
to infer whether 752 is earlier than 7S/. Unfortunately, it is
very difficult to get the differences among different per-core
clocks. Therefore, to accurately measure these time differences
and use them to order shared accesses are the first challenge.

(2) We need to determine the precise clock value when each
thread accesses shared resources. Clocks are read by specific
instructions, e.g., rdtsc on x86. They can be recorded before or
after an instruction accessing a shared resource. However, in
neither case does the clock value stand for precisely when the
shared resource is actually accessed. Furthermore, there is no
data dependency between RATC and the target shared resource
access instruction. Hence, they can be scheduled dynamically
in any order on processors that support out-of-order execution.
This means in Fig.1, S6 may happen before S5, and S3 may
happen before S2. For this reason, we cannot naively use the
results of RATC instructions to order shared accesses directly.

(3) We need to handle possible overflow of the clocks.
Clocks on MIPS processors has only 32-bits, so overflows
can occur every few seconds. Even a 64-bit clock can still
overflow depending on when we start taking the clock values.

For cores on the same chip, their local clocks are triggered
by the same clock signal. They count at the same frequency,
and the differences among them will be the same after proces-
sor reset. To different processors, if they are of the same type
and use the same crystal oscillator, the difference of their local
clocks is highly likely to be consistent. In such cases, with the
difference among these local clocks, we can use their values
to determine the orders of shared memory accesses. The rest
of this paper is based on such cases.

III. DETERMINING THE ORDER BY LOCAL CLOCKS

In this section, we propose our solutions for the challenges
mentioned in Section II. To use the local clocks, challenge (2)
must be solved first. We thus begin with this challenge.

A. Out-Of-Order Execution Exclusion

Most modern processors execute instructions out of order
for higher performance. Although instructions are retired in
order, RATC reads per-core clock before its retirement, and
thus could be out of the desired order. An intuitive solution
is to insert FENCE instructions before and after each RATC,
which is shown in Fig. 2(a). This may seem to work, but on
multi-core platforms things are much more complicated.

In modern multi-core processors, the completion of a write
operation can be divided into two phases: (1) Local Complete
(LC), i.e. the written data is held in the local write buffer, but
still not seen by other cores yet. (2) Globally Visible (GV),
i.e. the written data reaches the cache memory and is visible
to all other cores, guaranteed by the cache coherence protocol.

Figure 2(b) shows the example of a wrong inference. A local
FENCE only guarantees that WI(LC) < RdTCI, but cannot
control WI(GV). From the value of the local clock, we would
infer that W1 < R2, which is not the case.

Therefore, the selected FENCE instruction must be able to
ensure that RdTC is not issued until all previous write instruc-
tions become GV. Fortunately, modern processors do provide
instructions to ensure such orders among memory instructions,
or to flush the pipeline. For example, on x86, MFENCE will
hold the following loads and stores until preceding loads and
stores become globally visible; LFENCE holds the following

T1 T2 T1 T2 Tl T2
| | | I | I
'
! : P ‘ wa i wao .
w2 L wallo ! ! w2
wi ‘ o , | Wi (GV) :
1 : FENCE , : |
FENCE RATC1 FENCE MFENCE
| MFENCE
FENCE RATC2 I FENCE ™S pdre STORE STORE
|
RATC1 FEhllCE b [FEI:ICE b LFENCE LFENCE
FEI}ICE P | i | RDTSC RDTSC
| R2 P ! / R2 |1 LFENCE LFENCE
R I waey) I b 1 I
|
. ! I 1 i ! R1 R2
I ws R1 b i
I i ‘ Waoo I ws
i ¢ [| | o | r
AN v v SN Y Y o
(a) Add Fence (b) Error Caused by GV (c) Solution (X86)

Fig. 2: TC Order

| T1 T2
l_ _ _ _ 5 Corel TS Core2
| | (d=TS_Core2 - TS]Corel)
o s w2
E| st w1 i
Tl _182:d geirsp«- -
5, | $6:TS2<-RdTC — »
! ‘ hs1+d
— +152TS1<RATC |- — — —S12d —p

| I T
| . S7: R2
I S3: R1]
| v
v +

Fig. 3: Determine Orders by Local Clock

instructions until preceding instructions are locally complete.
A correct implementation on x86 is thus shown in Fig. 2(c)
(STORE means a memory store instruction, which is used by
MFENCE). In thread T1, MFENCE and LFENCE guarantee
WI(GV) < RATCI, while LFENCE guarantees RATCI < RI.

B. Handling the Time Difference among Per-Core Clocks

Although per-core clock values among cores could be
different at any instance of time, we can still make use of them
if we know their differences (called d). An example is shown
in Fig. 3 here. Assume that the values of the two local clocks
are TS_Corel and TS_Core2 at a certain time, respectively.
Then, d is TS_Core2 - TS_Corel. TS2 < TSI + d means S6
< 82 (i.e. RATC2 < RdTCI). We can infer that S5 < S3.

However, it is very difficult to get the precise value of d
because of those mentioned in Section II. Fortunately, it turns
out that if we can get a range of possible values on d, we still
can determine the order of shared accesses among threads.

Taking Fig. 3 as an example, assume d € [d1, d2]. If TS2 -
dl < TSI, we have TS2 - d < TS2 - d1 < TSI, and this means
S6 < S2. We can thus infer S5 < S3. Similarly if 7S7 + d2
< TS2, we can infer SI < S7. In other cases, these operations
cannot be ordered. Although the range of d is not as good as
a precise d, it is still possible to determine the order of most
shared accesses if the range is small enough.

For commercial processors that cannot provide the value of
d precisely, we propose two schemes to get a range of d:

(Scheme 1) Use test programs to obtain an range of d.

826

TO T1 T2
(X=0;) | I
I I
$1: TS1<-RdTC ‘ $6: TS3<-RdTC
T T

S3: TS2<-RdTC | | S8: TS4<-RdTC

|
|
|
|
|
|
| S2: X<-1; ‘57: X<-2;
|
|
|
|
|

Fig. 4: Local Clock Difference Tester

(Scheme 2) Use statistical means to obtain a smaller range
of d with high confidence

1) Scheme 1-Use Test Programs: We designed a small test
program shown in Fig. 4 for this scheme. The order of RATC
and other instructions is guaranteed , and the fence instructions
are not included for clarity. Threads T1 and T2 are bound
to two cores for which d is measured. Each thread writes a
different value to the variable X. Both threads read the local
clock before and after the write operation, and they get 7S/,
TS2, TS3 and TS4, respectively. The final value of X is checked
after both T1 and T2 exits.

If X is 2, S7 in T2 must be later than S2 in T1, so we can
infer S1 < §2 < §7 < S8. At the time that S/ reads the value
TSI from corel’s local clock, the value of core’s local clock
is TS1 + d. Therefore, we have TSI + d < TS4, that is:

d<TS4—TS1 (if Read X is 2) (1

Similarly, if the value of X read by thread TO is 1. We can
infer that S6 < §7 < S2 < §3, and TS3 < TS2+d:

d>TS3—-TS2 (if Read X is 1) 2)

We can repeat the above process so as to collect many cases
satisfying either Equation (1) or (2), and obtain many pairs of
<TS84;,TS1; >or < TS3;,TS2; >. According to the above
inference, the value of d is less than any 7'S4; — T'S1;, and
greater than any 7'S3; — T'S2; . That is:

max(753; — T52;) <d <min(T'S4; —T'S1;) (3)

As mentioned in Section III-A, in order to ensure the
execution order of the above instructions, we have to add
some FENCE or similar instructions in the testing program.
We designed four implementations for x86 platforms.

In Fig. 5(a), we use the instructions sequence introduced in
Fig. 2(c), while in Fig. 5(b), we use the serializing instruction
CPUID instead. Serializing instructions force the processor
to complete all previous instructions and flush all buffered
writes to memory before next instruction is fetched [5]. In
Fig. 5(c), we make use of atomic instruction XCHG. This

/ T0 T ip] \/ 0 T ¥ \
| RDTSC RDTSC I RDTSC RDTSC |
| LFENCE LFENCE 1 LFENCE LFENCE |
| MOV X, $1 MOV X, $2 1 MOV X, $1 MOV X, $2 |
| MFENCE MFENCE 1 MOV %eax, $0 | | MOV %eax, $0 | |
| MOVTMP,SO | MOVTMP,SO | | CPUID CPUID |
| LFENCE LFENCE 1 RDTSC RDTSC |

RDTSC RDTSC | |
: JoinT1 : | JoinT1 |

Join T2 Join T2 PO Py

| i FENCE 1] Rend X (b) Serializing |
a .

I I Instruction |

\ /7 \

P N e ~
/ 0 T n V7 10 = n \
| RDTSC RDTSC I |
| LFENCE LFENCE 1 o |

RDTSC
| MoV %e!:x, $1 | Mov %e?x, $2|11 LFENCE LFENCE |
| XCHG X, %ebx | | XCHG X, %ebx | | | MOV %eax, $0(52) | MOV %eax, $1(50) | |
| LFENCE LFENCE 1 MOV %ebsx, $1 MOV %ebx, $2 |
RDTSC RDTSC CMPXCHG X, %ebx || CMPXCHG X, %ebx
l MOV R1,%ebx MOV R2,%ebx I LFENCE LFENCE I
1 JoinT1 1 join T2 (IEE RDTSC I
| Join T2 I Join T2 - N |
|
I Read X, R1,R2 (c) XCHG I'l Read x (d) CMPXCHG I
I Check(X,R1,R2) | I\ check(x) |
\ /7 \ /

Fig. 5: Difference Tester Implementation

0 T 2

I | (flag = 0;) I

| 1 |

| S3:while(!flag);] s6:while(!flag);
S1:flag = 1; ‘ : |

: S4:TS1 <-RdTC; ‘ S7:TS2 <-RdTC;

| | i

v v v

Fig. 6: Statistic Tester

implementation does not guarantee that the GV of writing
X happen before RDTSC, so we need to check whether it
does. Fig. 5(d) is similar to that in Fig. 5(c), but it uses
CMPXCHG instead. Fig. 5(c) and Fig. 5(d) may generate a
smaller range for d for the expensive MFENCE or CPUID
is replaced. The efficacy of these versions depends on the
hardware implementation, but we can always run all of them
many times to obtain a minimum range of d.

2) Scheme 2-Statistical Testing: Although the range ob-
tained by Scheme 1 can be used to identify the order of most
shared accesses, we would still like to have a smaller one.

In Scheme 1, when the operations X=/ and X=2 are
executed close to the same time, we may get a smaller range
of d. However, even in such cases, the range cannot be shrunk
to 1. The reasons include:

(1) The time needed by RATC and fence instructions.

(2) The overhead brought by the write buffer flushing.

(3) The overhead brought by the cache coherence protocol.

In order to reduce their impact, we propose another scheme
based on statistics. Fig. 6 shows our statistic tester. It has two
worker threads (T1, T2) and a trigger thread (TO), which are
bound to 3 different cores. The initial value of flag is 0, so
T1 and T2 will spin on flag. After thread TO writes 1 to flag,
T1 and T2 finish the while loop and read the local clock,
hopefully about the same time. The difference of their results
(TS2 - TS1I) is the d we want.

827

However, in practice, the RdTCs in T1 and T2 are unlikely
to be executed at the same time for the following factors:

(Factor 1) The while loop contains at least 3 instructions:
load, compare and branch. When TO sets 1 to flag, T1 and T2
may not execute the same instruction and they will not exit
the while loop at the same time.

(Factor 2) The cache coherence protocol will delay one of
the worker threads. In most modern processors, each core has
private L1 and L2 caches, and the processor uses a coherence
protocol (e.g., MESIF on Intel x86) to maintain data coherence
among cores. When two cores simultaneously read one cache
line absent in their private cache, they obtain the data serially
[9]. Therefore, one of the cores will suffer a delay. Besides,
according to the thread-core mapping strategy, data transfer
distance between T1, T2 and TO may be different. When TO
set 1 to flag, T1 and T2 may not know it at the same time.

(Factor 3) Scheduling and interruption may occur between
the while loop and RdATC.

(Factor 4) When T1 and T2 exit the while loop, ICache
Miss or Page Fault may occur.

For the test program in Fig. 6, the effect of the above factors
needs to be reduced. Putting the codes of while loop and RATC
in the same cache line can eliminate the factor (4). For factor
(3), a kernel module will be helpful. It will prevent the kernel
to schedule other threads to the cores that T1 or T2 is bound
to. If an interruption occurs during the execution of the test
program, it can notify the test program that its result is invalid.

On most modern processors (x86, Power, SPARC and
MIPS, etc.), each processor has several cores. Suppose in Fig.
6, TO and T2 are bound to the same processor, and T1 is bound
to a different processor. T2 will get the new value of flag faster
than T1. This is the effect from thread-core mapping strategy.
We then use such a thread-core mapping: (1) if we want to
calculate the d of two cores on the same processor, T1 and
T2 are bound to cores in one processor; or (2) T1 and T2
are bound to two different processors, and in each run, TO is
randomly bound to either of the two processors that T1 and
T2 are bound to.

We use ¢ and [to represent the effects of factors (1) and (2),
and run the test program repeatedly. Assume < 17'S1;,7'52; >
is the timestamp pair of the i-th run, then:

TS2;, =TS1; +d+e; + 6;1;, that is:

In Equation (4), if T1 obtains the new value of flag first, the
value of ¢; is 1; otherwise, the value of d; is -1. We have:

{ d+e; —I; =TS22, — TS1; (ith T2 gets data first) 5)

d+e;+1; =TS52; —TS1; (jth T1 gets data first)

When the test program is run numerous times, we have:

1 o 1 & 1 &
d+ E ZEil - E ZI” = E Z(TSZ” - TSlZl)
=1 =1 =1

1« 1 1 ©
d—+ Ez€js + HZI]'S = HZ(TSZJS —TSljS)
s=1 s=1 s=1

3000000
& 2000000
Q
[
g 1000000
(&}
S Tsd
OOOOOOOOOOOOOOOOOOOOOO
SEE8gEFE888°888888R88E

Fig. 7: A Distribution of TSd

Assume in 79 runs, i1,%2,---,%,, 12 obtains data first,
while in the r; runs, ji,jo, -, jr,, T1 obtains data first.

When TO set flag to 1, the instructions that T1 and T2 are
executing are random. The effect of factor (1) on T1 and T2
are the same, implying that the expectation value of ¢ is 0.
If the test program runs numerous times, we can assume that
the average of ¢ is 0, that is = 372, &;, ~ = 1L, &, ~ 0.
According to our thread-core mapping strategy, if the number
of runs is large enough, the delay caused by factor (2) is the
same for both T1 and T2, that is =372, I, = = 301, I,
Therefore, Equation (6) is converted to:

72 71

dw(gLE:CTS%Z—TSIQ)+£i§:CTS%S—IS1%D/2(D

T2 =1 s=1

By Wiener-Khintchines law for large numbers, when the
number of test increases to a very large number, the value of
d in Equation 7 will approach a constant. Therefore, we can
use the test program in Fig. 6. to estimate the difference of
the local clocks on the cores to which T1 and T2 are bound.

To use the above equations, we need to know the thread in
Fig. 6 that obtains the new value of flag first. We run the test
program in Fig. 6 20 million times. A distribution of 7°'Sd =
TS52 — TS1 is shown in Fig. 7.

There are two spikes in Fig. 7. In the i-th run, 7'Sd; =
TS52; —TS1; =d+e;+6;1;. The value of d is fixed. And the
value of ¢; is affected by 3 instructions, which take less than
10 cycles. In Fig. 7, the distance of the two spikes is more
than 100 cycles. Therefore, the two spikes are generated by
61. We regard the center line of the two spikes in Fig. 7. as
the boundary. If the value of TSd is on the left side of this
boundary, it implies that T1 obtains data first, and the value
of §; is 1. Otherwise, the value of §; is -1.

Using the above equations, we get an approximation of d
(marked as D). However, it is still not precise enough. We
need to calculate the confidence interval of D. According to
the central-limit theorem, the value of D approximately has
a normal distribution, that is D ~ N(u,0?). The expectation
value of this distribution is the approximated difference of the
local clocks on different cores. Assume Dy, Do, -, D,, are
n samples, and D and S? are the sample average and variance
respectively. To a given significance level o, we expect to find
an interval that contains the expectation p with a probability
1—«. Because the variance o2 of this distribution is unknown,
we use sample variance instead of the real variance:

828

_ S _ S
P{D——ta(n—-1)<u<D
{ NGk (n—1)<p<D+ 7
Assume the sample size is n, the expectation p (i.e., the
difference value d) has a confidence interval with confidence
coefficient 1 — « :

ta(n—=1)} =1-a (8)

[D — %t%(n— 1),D + %t%(n— 1)] ()]
3) Local Clock Overflow: As mentioned earlier, the size of
the clock in most processors (expect SPARC and MIPS) is
64-bit, which takes more than ten years to overflow with the
current clock frequency. The 63-bit SPARC clock also takes
several years. It is enough for most applications. But, for a
32-bit MIPS clock, overflows can occur every a few seconds.
Therefore, overflow must be considered and handled.

Assume the overflow cycle of a clock is P, we must ensure
that the interval between two adjacent records is less than P. In
such a case, we only need to compare the value of two adjacent
records T'SCp 41 and TSC,: It TSC), 11 — TSC,, < 0, the
clock overflowed; if T'SC,,+1 — T'SC,, > 0, it did not.

We scan all the records during the offline analysis. When
we found the clock overflows, an overflow counter is increased
by 1. When we order shared accesses among threads, both the
clock and the overflow counter are taken into consideration.

However, since the MIPS clock overflows every few sec-
onds, an interrupt or task rescheduling may make the interval
between two records larger than P. In practice, the time used to
handle an interrupt is short in most cases (in milliseconds), but
task rescheduling will affect the accuracy if dozens of threads
are bound to one core. We did not find two adjacent records
whose interval is more than 1 second. Furthermore, using a
kernel module to record the wall clock time of the scheduling
and interruption could solve this problem thoroughly.

IV. REPRODUCING BUGS USING LoCAL CLOCKS

In this section, we select two well-known bug reproducing
systems PRES and CLAP, and show how to apply our ap-
proach to them. The reasons to select them are: as mentioned
in Section I, PRES relies on an expensive scheme to record
the global order of some special events. CLAP depends on
offline analysis to compute the buggy interleaving, with very
low recording overhead. They represent the two key problems:
1.large recording overhead; 2.long analysis and replay time.

To apply our approach to PRES and CLAP, first, we need to
bind each thread to a different core. We then use our technique
described in Section IIL.B to calculate the range of d of these
cores in advance.

For PRES, its bottleneck is the recording phase. We record
the value of local clock instead of the global order, and infer
the orders of such special points as described in Section III.
Our experiments show that without globally recording, the
overhead can be reduced by up to 85.24%.

For CLAP, our goal is to shorten the constraint solving
time. Besides recording the execution paths, we select some

| |
Wit R21 | Wi r] } : W1
; N 1
; l . RATCL RdTCS H 1 4|/ RdTC1
R11 W2 i : R‘u Wa E E RdTCZ : i
1
| . " : < ! Howe I I
H -
W22 " R12 W22 " | |
Riz i = i R Naeen !
e BRI S pgrea o ! |
...... " | i : 1 Wi :
| 1 { i1 RdTCS -
— Wam w PN Ratcs " '
| ' Rin Wam | | RATC7
R2 | . . I 1
Wim ‘n ' Wim R2n : I 1 &2
v v v v v v v
(a) CLAP (b) TSC (c) Order Value

Fig. 8: Constraints Reduction

key points to record their local timestamps, and infer their
orders by an efficient offline analysis. These key points can
be selected at function calls or loops. We then combine the
inferred orders and the original constraints as new input to the
SMT solver. Our experiments show that, for most benchmarks,
more than 95% of shared accesses order can be ordered.

For the remaining unordered shared accesses, we can also
reduce the solving complexity with the help of local times-
tamps. Assume the memory operations in Fig. 8 access the
same shared variable. In Fig. 8(a), for R;; in thread TI,
CLAP needs to infer the order between Ri{; and all the
writes(Way, - -+, Wa,,) in thread T2. However, in Fig. 8(b),
if we could know RATC3 < RdATCI and RATC2 < RdTC4 by
local timestamps, we only need to infer the order of R11, Wa;
and WQQ.

On the other hand, for every shared access, CLAP assigns
an integer as its global order number. With the help of local
timestamps, we can restrict the range of these global order
numbers and shorten the solving time. In Fig. 8(c), the global
order numbers of the five shared accesses are all within the
interval [1,5]. If by the value of local clock, we know RdTCI1
< RATC2 < RATC3 < RATC4 < RATC5 < RATC6 < RdTC7,
we can infer that W1 < W2 < RI/W3 < R2. This can reduce
the range of the global order numbers of these shared accesses
to [1,1], [2,2], [3.4], [3,4], and [5,5], respectively.

V. EXPERIMENTS

Two systems, PRES-impl and CLAP-impl, are implemented
according to the schemes described in PRES [14] and CLAP
[4]. We then apply ReCBuLC to these two systems, called
PRES-tc and CLAP-tc, respectively. In order to use the local
clocks, each thread of them is bound to a different core. In this
section, we will evaluate their performance and Table I shows
the platform. We select several bugs in real multi-threaded
programs (TABLE II) as benchmarks. They include widely
used servers, desktop applications, and scientific programs.
The types of bugs cover common concurrency bugs, such as
atomicity violation (AV) and order violation (OV).

In this section, we compare PRES-tc/CLAP-tc with PRES-
impl/CLAP-impl, and evaluate our approach. In the experi-
ments, the performance of Apache and Cherokee is measured
by their throughputs, and the others are by the execution time.

829

TABLE III: REPRODUCING TRIES. ADD_UO MEANS THE ADDITIONAL UNORDERED ACCESSES

APACHE CHEROKEE PBZIP2 PFSCAN

SYNC FUNC BB RW
Benchmarks PRES-impl PRES-tc_S / PRES-tc_P impl tc_S / tc_P impl tc_S /tc_P impl tc_S /tc_P
Tries Add_UO Tries Tries Add_UO Tries Tries Add_UO Tries Tries Add_UO Tries
APACHE 69 0.00%/0.00% 69/69 5 0.01%/0.01% 5/5 1 0.02%/0.07% 1/1 1 0.05%/0.09% 1/1
CHEROKEE 46 0.00%/0.00% 46/46 21 0.00%/0.00% 21/21 8 0.00%/0.00% 8/8 1 0.02%/0.03% 1/1
PBzip2 3 0.00%/0.00% 3/3 3 0.00%/0.00% 3/3 2 0.00%/0.00% 2/2 1 0.00%/0.00% 1/1
PFSCAN 32 0.00%/0.00% 32/32 11 0.00%/0.00% 11/11 1 0.05%/0.18% 1/1 1 2.94%/4.42% 1/1
AGET 14 0.00%/0.00% 14/14 9 0.00%/0.00% 9/9 1 0.00%/0.00% 3/3 1 0.00%/0.00% 1/1
BARNES 12 0.00%/0.00% 12/12 4 0.00%/0.00% 4/4 1 0.00%/0.00% 1/1 1 0.24%1/0.36% 1/1
LU 3 0.00%/0.00% 10/10 6 0.04%/0.15% 6/6 1 0.27%1/0.79% 171 1 19.35%/25.50% 1/1
RADIOSITY - 0.00%/0.00% -/- 98 0.00%/0.03% 98 1 0.07%/0.21% 1/1 1 3.10%/4.88% 1/1
1,000
E PRESimpl PREStc
;"’; 100
;
E 10
o i A
g 1 m | e i (R A om0 - -
z SYNC FUNC BB RW SYNCFUNC BB RW SYNCFUNC BB RW SYNC FUNC BB RW SYNC FUNC BB RW SYNCFUNC BB RW SYNCFUNC BB RW SYNCFUNC BB RW

RADIOSITY

AGET BARNES LU

Fig. 9: Normalized Exec. Time of PRES-impl/PRES-tc

TABLE I: PLATFORM DETAILS

CPU Intel Xeon E7-4807, 6 cores, 1.87GHz
Processors 4
Level 1 Cache (I/D) 6 * 24K / 6 * 24K
Level 2 Cache 6 * 256K
Level 3 Cache 18M
Memory 16G
oS Linux 2.6.32
Compiler GCC 4.6.0
SMT Solver Z3[24]
TABLE II: BENCHMARKS
TYPE BENCHMARKS DESCRIPTION | BUG TYPES
Apache HTTPD[26] Web server AV
Server
Cherokee[27] Web server AV
PBzip2 Compressor ov
Desktop Pfscan File scanner AV
application Aget HTTP/FTP AV
downloader
Barnes Barnes N-Body ov
Scientific algorithm
application LU LU matrix ov
(SPLASH-2) multiplication
(23] Radiosity Graphics ov
rendering

System library routines rarely access shared variables and their
accesses can be inferred from their arguments easily, so we
do not consider them.

A. Evaluating PRES-impl and PRES-tc

PRES-impl records the global order of certain operations,
while PRES-tc records their local timestamps instead. It re-
duces the recording overhead significantly.

Fig. 9 shows the normalized execution time of PRES-
impl to PRES-tc instrumented at the synchronization (SYNC),
function (FUNC), basic-block (BB), and memory-operation
(RW) level. The baseline is the native execution time.

PRES [14] can reproduce all of the bugs at the FUNC level
within 1000 tries. At the BB level, PRES reproduces all of the
bugs within 10 tries. Taking recording overhead and the num-
ber of reproducing tries into consideration, instrumentation at
these two levels seems reasonably good for PRES-impl. PRES-
tc reduces the recording overhead from 320.63% in PRES-impl
to 133.48% at the FUNC level on average. At the BB level, the
recording overhead is reduced from 1730.05% to 688.34%.

The main reason for the improvement is that PRES-tc avoids
the synchronizations and allows each thread to record local
timestamps concurrently. Take LU as an example, 56.49% and
64.53% of the recordings in PRES-tc are done concurrently
at FUNC and BB levels, respectively, and thus 62.44% and
69.24% of the recording overheads are reduced.

At SYNC level, the overheads of the two systems are
similar. This is because the number of synchronization op-
erations is very small, and the recording overhead is hidden
by the time-consuming synchronization operations. During the
execution of LU with default inputs, it has more than 3 million
function calls, but only 300 synchronization operations.

For PBZIP2 and AGET, their overheads in both schemes
are nearly the same. The reason is that the main workload
of PBZIP2 and AGET is compressing and downloading data

830

PBZIP2
3 7 PRESImpl & PREStsc

PFSCAN
40

30
20

10

7
o onon B o oo B e

23
7y
% 3|
7y
A
7y
7y
% 3|
7y
A
7y
7y
% 3|
7y
A
N
7§
%3]
% 3|
A
2
3
73

% 3]
m R
'\
Al
NN
n A
"N
% % 3]
N A
4 B

B
B
7
7
7
B
G
7
7
B
b
7
7
A
4
G
G
7
4
G
@

g
3
3
§
3
3
y
§
N
3
y
§
3
3
§
3
H
3
3
3
3

7
/i
/|
g
7
/i
7
4
7
/i
/i
7
g
7
g
7
g
7
/i
4

Errrerrrsrrsreiirerirrerie)
O]
O

oo SUSISTETD
I
BezzrzrrrzA
EELEILIEEA
fasaaanl
]
o]
EEZIZZEIEIA
SISO
za

17

o
o in .
» 55
s
p ST
o SSUEEN

AGET CHEROKEE

bz
BN
o & o
STECEEY
)

SSSERSRRSERD
)

=S
ool
SN
L -

s

e s b BB

o

n o=
o S
L
o IS

16 16 16 4 8 16 4 8 16 4 8 16 4 8 16 4 B 16 16 4 16 4 8 16 4 16 4 8 16 4 B 16 4 B 16 4 B 16
SYNC FUNC BB RW SYNC FUNC BB RW SYNC FUNC BB RW SYNC FUNC BB RW
APACHE BARNES LU RADIOSITY
1000 10000 1000 1000
100 100 g 0 100 O 100
e q
00 B By N N Ny [N 7 . N
10 g 8 7 N 10 KN N 10 G R 3
g 5 R o N I NR A . N]
f 8N e i NN "
4 8 16 4 8 16 4 8 16 4 B 16 4 B 16 4 8 16 4 B 16 4 8 16 4 8 16 4 B8 16 4 B 16 4 B 16 4 8 16 4 8 16 4 & 16 4 B 16
SYNC FUNC BB RW SYNC FUNC BB RW SYNC FUNC BB RW SYNC FUNC BB RW
Fig. 10: Scalability of PRES-impl/PRES-tc. The y-axis is normalized exec. time, and in the 4 lower sub graphs are logarithmic.
PBZIP2 PFSCAN AGET
100000 1000000 100000
10000 100000 10000
1000 10000 1000
i 1000 0o
100 100
10 10 10 I
N -- | [- — A | | | H oelom == - 1
CLAPImpl tcFUNC tcLOOP tcFUNCLOOP CLAPImpl tcFUNC tcLOOP tcFUNCLOOP 01 CLAPimpl tcFUNC tclOOP tcFUNCLOOP
APACHE CHEROKEE RACEY
10000 100000 100000
1000 10000 10000
1000 1000
100
100 100
) I | I | || 1 |
. sniil mN R 1 ST [T R . [[[]]
CLAPimpl tcFUNC tcloor tcFUNCLOOP CLAPimpl tcFUNC tclOOP T FUNCLOOP CLARimpl tcFUNC tcLooP tcFUNCLOOP

Fig. 11: Normalized Solving Time of CLAP-impl/CLAP-tc. Each benchmark is evaluated with 5 inputs.

using system library routines, but we do not instrument those
routines as mentioned earlier.

PRES-tc determines the order of shared memory accesses by
a range of d. Compared with PRES-impl, it will bring a small
amount of additional unordered shared memory accesses.
TABLE III shows the percent of them to the total shared
memory accesses and the number of tries in both PRES-
impl and PRES-tc. PRES-tc_P and PRES-tc_S use the ranges
of d calculated by the two schemes described in Section III
respectively. We can see from these data that the percent of
additional unordered accesses is less than 1% at BB, FUNC,
and SYNC levels, which is a small percentage of all shared
memory accesses. We also see that PRES-tc needs no more
tries than PRES-impl. This is because the goal of PRES is to
reproduce bugs, and for most concurrency bugs, the root cause
is only related to a handful of shared accesses [1]. For LU
at RW level, although there are 19.35%~25.50% unordered
shared accesses, the bug can still be reproduced in one try. That
is because the bug in LU is caused by invalid synchronization
operations, and the order of accesses determined by local
timestamps is enough to reproduce this bug.

Figure 10 shows the recording overhead of PRES-impl and
PRES-tc with different numbers of threads. When the number
of threads increases, the overhead of PRES-impl increases

more quickly in most cases because the lock is more frequently
accessed. For PRES-tc, the thread-private recording benefits
its scalability. For LU at the FUNC level, 56.49%, 77.09%,
and 83.27% of the recordings are done concurrently when
there are 4, 8, and 16 threads, respectively. If there are more
threads, a higher percentage of the recording time will be done
concurrently.

B. Evaluating CLAP-impl and CLAP-tc

CLAP uses an SMT solver to reproduce the buggy in-
terleavings, but the floating-point operations supported by
SMT solvers are limited. The bugs in BARNES, LU and
RADIOSITY are related to floating point operations. CLAP
does not use them as benchmarks. Therefore, in CLAP-impl,
we use these three benchmarks to measure the recording
slowdown only. Furthermore, CLAP uses a well-designed test
case Racey [20] that contains massive data races and is very
likely to produce a different result when the interleaving is
different. CLAP uses it to show its capability. We also use
Racey to evaluate CLAP-tc. For better performance, the range
of d used by CLAP-tc is calculated using Statistics Testing.

Figure 12 shows the recording overhead of CLAP-impl and
CLAP-tc at different instrumentation levels. FUNC records
the local timestamps at the entries and exits of functions;

831

100

ZCLAPiImpl
FUNC
LooP
FUNCLOOP

Normalized Exec. Time

qv
AN
®

Fig. 12: Recording Overhead of CLAP-impl/CLAP-tc.

LOOP records at the entries, exits and back edges of loops;
FUNCLOOP is a combination of FUNC and LOOP. In Fig.
12, we can see that the recording slowdown of CLAP-tc is
101%~142% of CLAP-impl, and mostly less than 110%.

Figure 11 shows the solving time of CLAP-impl and CLAP-
tc at different instrumentation levels. From small to large,
each benchmark is tested with 5 different inputs. During bug
reproducing, for the input constraints, we can get the results
from the SMT solver first and combine the results with the
original input as a new input. The time the solver takes to
solve the new input is approximated to the minimum solving
time, and we call it near-optimal solving time (NOST). In Fig.
11, we show the ratios of CLAP-impl and CLAP-tc to NOST.
CLAP-tc records the local timestamps at three different levels.

Figure 11 shows that, compared to CLAP-impl, CLAP-tc
reduces solving time by 84.66% ~99.99%. This is because
the orders of most shared memory accesses are determined
by local timestamps. In PBZIP2 at the FUNCLOOP level, the
local timestamps determine more than 99% of the orders. This
reduces the solving time substantially. Furthermore, with larger
inputs, the solving time of CLAP-impl increases much more
quickly than that of CLAP-tc. In PBZIP2, the solving time
of CLAP-impl with the largest input is about 1000X to the
smallest input, while the ratio of CLAP-tc is only 4X.

On the other hand, for most benchmarks, the solving time
of CLAP-tc is less than 10X of NOST. Especially, the solving
time of Aget is nearly the same as NOST. In our experiments,
NOST of all benchmarks is at most several seconds.

In studying Fig. 11 and 12, we can see that the lower the
instrumentation level is, the less solving time but the more
overhead is introduced. At the FUNC and LOOP levels, the
loop bodies may contain complicated function calls, and a
function body may contain many loops. This makes their
solving time much longer than that at the FUNCLOOP level.
The recording overhead at the FUNCLOOP level is a bit more
than that at the FUNC and LOOP level. Altogether, we believe
FUNCLOORP is a suitable level for instrumentation.

On the other hand, CLAP-tc is less effective for Racey. In
Racey, most addresses of write operations are calculated by
shared variables. In such cases, if a read happens before a
write, it is difficult to infer whether the read and the write
access the same shared variable or not. Thus, a few redundant
constraints remain in the input for the SMT solver. Even

0.2

~ +:
S 0.15 i v
= -
© T as + T + * + o+ 4
3 0.1 + t.rd +’ . +;++ l * &t BFL
S R e AR LY P A A i LM
> 0.05 awdlTE e T T R P |
2 g * 4 T T e e e T
- WF e + T) ++:§ st .
3 0 ' -~ e
- 1] 24 48 72 96 +.‘120 144 168 192 216 240 264 288
2 -0.05 % hours
< L.
8 w01 — —
+ Stability Acc_Stability
-0.15

Fig. 13: Stability of Equation 7.

TABLE IV: PROGRAM TESTING RESULTS

. 15t Test 2nd Test
Testing Program

MIN | MAX | MIN | MAX
Fig. 5(a) -114 112 -116 120
Fig. 5(b) -190 182 -180 188
Fig. 5(c) -128 128 -124 126
Fig. 5(d) -116 120 -120 110
Result -114 112 -116 110

so, the solving time of CLAP-impl is about 5X-100X longer
compared to CLAP-tc in our experiments, which also shows
the effectiveness of using local time stamps.

C. Value Differences of Local Clocks among Cores

This subsection shows the results of our two schemes to
calculate the range of d.

1) Program Testing Scheme: We designs four programs to
test the ranges of d. TABLE IV shows two test results for
these programs on the same cores. In each test, every program
executes 10K times.

The test platform and the number of test runs could affect
the results in TABLE IV. More test runs could generate a
smaller range. On our test platform, the test program in Fig.
5(b) gets a larger range than other programs in Fig. 5. This is
because the implementation of the serializing instructions on
this processor is more time-consuming than others. The results
of the other programs are more or less the same. In TABLE
IV, the range of d is about 200 cycles. Using is to order shared
access will not bring false positives or false negatives.

2) Statistics Scheme: Our proposed statistical scheme uses
the statistical tester and Equation 7 to calculate the range of
d. For Equation 7, we need to know the value of d;, and the
test procedure is as follows:

(1) Bind the worker and trigger threads in Fig. 6 according
to Section III-B2.

(2) Run the test program N times, and get N results by using
Equation (4) delta; = d+¢; + 0;1; =T82; —TS1;

(3) Build the distribution of delta; according to Section
III-B2 and infer the value of ¢§; in each execution.

(4) Calculate the value of d by Equation 6.

Stability. If the number of test runs of the statistical tester
is large enough, the result of Equation (7) will be stable. We
ran this program continuously for more than 10 days, collected
around 100 million results that are shown in Fig. 13.

832

TABLE V: CONFIDENCE INTERVALS. THE FIRST COLUMN IS THE CON-
FIDENCE COEFFICIENT. THE FIRST ROW IS THE VALUE OF N, AND THE
SECOND ROW IS THE VALUE OF M

N 20 50 100
M 5 10 | 20 5 10 | 20 5 10 | 20

09| [5:86,| [-1.69,[-0.63| [-1.48, [-0.41] [-0.25] [-1.21] [-0.80] [-0.29

9.39]| 3.66] 1.75] 1.88]] 1.08] 0.58] 0.57] 0.39] 0.42

0995 | [12:50/ [-2.95/[-1.05, [2.93] [-0.77] [-0.40| [-1.99| [-1.08 [-0.41

16.03] 4.92] 2.17] 3.34]| 1.43] 0.73] 1.34] 067 055

00099 | 12398/ [-4.45, [-1.47 [-5.46, [-1.18] 0.5 [-3.33| [-141] [-0.54

27.51] 6.42] 2.59] 5.86]] 1.85] 0.88] 2.68] 1.00] 0.68

000000 | 174423/ [-6.29, [-1.91] [9.91,] [-1.70] [:0.70] [-5.69 [-1.82| [-0.67

47.77] 8.26] 3.03] 10.31] 2.36] 1.03] 5.04] 1.41] 081

In this figure, we calculate d every hour, using about
360,000 runs of the statistical tester. Stability means the
d is calculated by the data collected in each hour, while
Acc_Stability means the d calculated by the data from the
beginning. From these data, we can see that, over a long time
period (more than 10 days), the calculated d in each hour are
all in the interval [-0.0885, 0.1827], and their sample variance
is 0.001379. This means that the calculated d is very stable.

Confidence Interval. Now we calculate an approximation
of d. We calculate its confidence interval under differen-
t confidence coefficients using Equation 9. The confidence
interval requires many samples of d. We calculates d using
the method described in Section III-B2 many times and get
dy,ds,ds, -+ ,dyr. Each d; is the result of N runs of the
program in Fig. 6. Finally, we get the data shown in TABLE
V by Equation 9 using these d;.

In TABLE V, the higher the confidence coefficient is, the
larger the range is. When the confidence coefficient is fixed,
the values of N and M vary inversely with the confidence
intervals. In practice, we could calculate confidence intervals
with different confidence coefficients according to the target
program. TABLE V shows that when the confidence coeffi-
cient is 0.99999, the N is 20 and the M is 5. The range of the
confidence interval is about 100, which is still smaller than
the range obtained by program testing.

VI. RELATED WORK

For most record-and-replay or other bug reproducing sys-
tems, the focus has been on reducing the recording overhead.
However, this is often traded with high offline analysis cost.
Our approach takes advantage of the local clock, and can
reduce both recording overhead and the bug reproducing time.

PRES [14] does not record all the global order during
recording, and tries to reproduce bugs by offline analysis. It
only records the global order of some special events, such
as synchronizations, system calls, function calls, basic blocks,
and memory instructions. During offline analysis, it searches
for the buggy interleaving by exploration.

Some systems reduce the recording slowdown by record
other information that imply the global order of shared ac-
cesses. SMP-Revirt [12] and Scribe [13] make use of the page
protection mechanism. They record the ownership transfer of
pages among threads to infer the order of shared accesses.

For programs with little false sharing, Scribe has good perfor-
mance. However, for programs with significant false sharing,
its recording overhead could be very large. DoublePlay [21]
divides the program into many epochs by time intervals.
Besides concurrent execution, DoublePlay forks new processes
to run epochs serially at the beginning of every epoch. It only
needs to record the order of epochs, hence, dramatically reduce
recording overhead. If the results of concurrent and serial
execution are different, a rollback is needed. For programs
with many races, the rollback overhead can be large. Besides,
these systems affect the behavior of multi-threaded programs,
and some bugs may never be exposed.

There are also systems that record mostly local information
to avoid global synchronization. CLAP [4] makes each thread
record its own execution paths and searches for buggy inter-
leavings by a SMT solver. ODR [17] reproduces concurrency
bugs by ensuring the same output as recording execution. It
only records the global order of synchronization operations
during execution. In reproducing, similar to CLAP, it generates
many interleavings and verifies their outputs by an SMT solver.

CoreDump [19] makes use of the core dump when a
program crashes. It records the number of iterations in loops
at run time, and incurs little overhead. Depending on the error
point, it searches for a similar point to generate a right core
dump. Comparing the core dumps of these two points, it tries
to explore the buggy interleaving.

LReplay [15] uses global timestamps. It expects future
processors to provide a global clock with a fast access time.
With such a global clock, LReplay only needs to record orders
that cannot be inferred from the global time.

VII. CONCLUSION

In order to reproduce the concurrency bugs in multi-
threaded programs more efficiently, this paper proposes
ReCBuLC, which takes advantage of the local per-core clocks
on modern processors. During the recording phase, each thread
records its own data and local timestamps to avoid expensive
synchronization operations among threads. The local clocks
are used to determine the global order of shared-resource
accesses. We have proposed two effective schemes to calculate
the time difference among local clocks. Our experiments show
that after applying ReCBuLC to PRES and CLAP, two well-
known record-and-replay schemes, the recording overheads
and solving time can be reduced by 1% ~ 85% and 84.66%
~ 99.99% respectively.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
useful feedback. This research is supported by the National
High Technology Research and Development Program of
China under grant 2012AA010901, the National Natural Sci-
ence Foundation of China (NSFC) under grants 61303051,
61303052, 61332009, 60925009, and 61100011, the Innova-
tion Research Group of NSFC under grant 61221062.

833

REFERENCES

[1] Shan Lu, Soyeon Park, Eunsoo Seo, Yuanyuan Zhou. Learning from
mistakes a comprehensive study of real world concurrency bug charac-
teristics. In ASPLOS, 2008.

[2] Nancy Leveson, Clark S. Turner. An investigation of the therac-25
accidents. Computer, 26(7):18C41, 1993.

[3] SecurityFocus. Software bug
http://www.securityfocus.com/news/8016

[4] Jeff Huang, Charles Zhang, and Julian Dolby. CLAP: Recording Local
Executions to Reproduce Concurrency Failures. In PLDI, 2013.

[5] Intel 64 and IA-32 Architectures Software Developers Manual. September
2013.

[6] MIPS Architecture For Programmers. Revision 3.12. April 28, 2011.

[7]1 Power ISA Version 2.07. May 3, 2013.

[8] Oracle SPARC Architecture 2011. July, 2012.

[9]1 J.R. Goodman and H.H.J. Hum. MESIF: A Two-Hop Cache Coherence
Protocol for Point-to-Point Interconnects (2009).

[10] Thomas. J. Leblanc and John. M. Mellor-Crummey. Debugging parallel
programs with instant replay. IEEE Trans. Comput., 36(4), 1987.

[11] Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn,
Brad Calder. Automatic logging of operating system effects to guide
application-level architecture simulation. In SIGMETRICS, 2006.

[12] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, Peter
M. Chen. Execution replay of multiprocessor virtual machines. In VEE,
2008.

[13] Soren Laadan, Nicolas Viennot, and Jason Nieh. Transparent,
Lightweight Application Execution Replay on Commodity Multiprocessor
Operating Systems. In SIGMETRICS, 2010.

[14] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini
Kaushik, Kyu H. Lee, and Shan Lu. PRES: Probabilistic Replay with
Execution Sketching on Multiprocessors. In SOSP, 2009.

[15] Yunji Chen, Weiwu Hu, Tianshi Chen, and Ruiyang Wu. LReplay: A
Pending Period Based Deterministic Replay Scheme. In ISCA, 2010.

contributed to blackout.

[16] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish
Narayanasamy, Peter M. Chen, Jason Flinn. Respec: efficient online mul-
tiprocessor replay via speculation and external determinism. In ASPLOS,
2010.

[17] Gautam Altekar, Ion Stoica. ODR: Output-Deterministic Replay for
Multicore Debugging. In SOSP, 2009.

[18] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording
and deterministically replaying shared-memory multi-processor execution
efficiently. In ISCA, 2008.

[19] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. Ana-
lyzing Multicore Dumps to Facilitate Concurrency Bug Reproduction. In
ASPLOS, 2010.

[20] Min Xu, Rastislav Bodik, and Mark Hill. A flight data recorder for
full-system multiprocessor deterministic replay. In ISCA, 2003.

[21] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Double-
Play: Parallelizing Sequential Logging and Replay. In ASPLOS, 2012.

[22] Derek Hower and Mark Hill. Rerun: Exploiting episodes for lightweight
memory race recording. In ISCA, 2008.

[23] Jeff Huang, Peng Liu, and Charles Zhang. LEAP: Lightweight determin-
istic multi-processor replay of concurrent Java programs. In FSE, 2010.

[24] Leonardo De Moura and Nikolaj Bjorner. Z3: an efficient SMT solver.
In TACAS, 2008.

[25] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, Anoop Gupta. The SPLASH-2 programs: characterization and
methodological considerations. In ISCA, 1995.

[26] Apache HTTPD. http://httpd.apache.org/

[27] Cherokee Web Server. http://cherokee-project.com/

[28] Dongyoon Lee, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
Chimera: hybrid program analysis for determinism. In PLDI, 2012.

[29] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver.
Technical report, 2006.

[30] J. GRAY. Why do computers stop and what can be done about it? In
Buroautomation (1985), pp. 128-145.

834

