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Abstract. This paper presents a framework to support the automated
exchange of data abstractions in multi-threaded applications, together
with an empirical study of their uses in PARSEC. Our framework was
able to speedup six of the benchmarks by up to 2x on two platforms.

1 Introduction

Software applications need to use synchronous data abstractions, e.g., queues and
hash maps, to store shared data. The relative efficiency of these abstractions are
not easily predictable when used in different scenarios. To demonstrate, Figure 1
shows the measured speedups when using C11 queue, TBB concurrent queue,
and Boost deque, to replace a default ring-buffer task-queue on two hardware
platforms. On both platforms, the TBB concurrent queue performs the best
when the batch size is 1 but poorly when batch size is 20, where the C11 queue
is the best on the AMD and the Boost deque the best on the Intel. There is not
a single implementation that always performs the best.
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Fig. 2: Overall Workflow

This paper aims to support the au-
tomated exchange of abstractions in
multi-threaded applications. Figure 2
shows our overall workflow, which in-
cludes (1) an abstraction adapter in-
terface that documents the relations
between different abstraction imple-
mentations and (2) an abstraction
replacement compiler that automati-
cally substitutes abstractions in appli-
cations with alternative ones based on
the adapter specifications. Offline profiling is used to drive the optimizations.

The abstraction adapter interface, manually written by developers, is used to
ensure correct optimization. Our technical contributions include the following.
– A programming interface for documenting the relations between different

abstraction, thus allowing them to be used interchangeably in applications.
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*batch size: the number of tasks a thread can push into or pop from the queue each time;

# of prods: # of cons: the number of threads pushing into vs popping from the queue

Fig. 1: Efficiencies of three task queues on a 12-core Intel and 24-core AMD

– A source-to-source compiler that automatically replaces existing uses of ab-
stractions in multi-threaded applications with alternative implementations;

– An empirical study of optimizing the use of data abstractions in PARSEC [4].

The rest of the paper presents each of the above components in more detail.

2 The Abstraction Adapter Interface

Figure 3 shows some example adapters defined using our interface, each in the
form of adapt x as y { body }, where x is an existing abstraction being adapted;
y is an abstract type name; and body is a sequence of interface functions, each
defined by borrowing a subset of C++, enhanced with the following notations,

– this, which refers to the abstraction object being adapted;

– val type, which refers to the type of values stored in abstraction x;

– ref(t), which defines a pointer type to objects of type t;

– array(t, n), which defines an array type with n elements of type t;

– the () notation, which refers to an empty type (the void type);

– t1 → t2, which defines a function type that maps type t1 to t2;

– the | operator, which connects multiple implementations of a function;

– syn. mutex lock(v){s}, which uses mutex lock v to synchronize block s;

– syn. wait(c, v), which blocks a thread until the condition variable c is set;

– syn. broadcast(c), which wakes up threads blocked on condition variable c;

– foreach v in lower .. upper .. step do s enddo, which repetitively evaluates
statement s while setting variable v from lower to upper by step.

For two existing abstractions xi and xj to be exchangeable, two adapters ai
and aj must be defined to respectively adapt them to a common abstract type.
Further, the common interface functions in both ai and aj must be sufficient to
cover all uses of xi in the application. Our compiler checks these requirements
and performs the substitution only when all the requirements are satisfied.
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(1) adapt struct ::_ringbuffer_t {int head=0; int tail=0; int size=CONFIG;
val_type data[size]; } from dedup/{queue.h,queue.c} as task_queue {

_empty = () -> (this.tail == this.head);
_full = () -> (this.head == (this.tail - 1 + this.size) % this.size)

| (this.tail == (this.head+1) % this.size);
_erase_1 = (val : ref(val_type)) -> syn._mutex_lock(&this.mutex) {

val = this.data[this.tail];
this.tail = this.tail +1; if (this.tail == this.size) this.tail=0;

}
_insert_1 = (x : val_type) -> syn._mutex_lock(&this.mutex) {

this.data[this.head] = x;
this.head = this.head + 1; if (this.head == this.size) this.head = 0;

}
_syn_erase_n = (val : array(val_type,1), n:int, lock : mutex, f1 : ()->(), f2 : ()->())

-> syn._mutex_lock(lock) { f1;
foreach i in 0 .. n ..1 do

this._erase_1(val[i]); if (this._empty()) { i=i+1; break; }
enddo
f2; return i; }

_syn_insert_n = ...... };
(2) adapt tbb::concurrent_queue as task_queue {

_empty = () -> this.empty();
_full = ()->false;
_try_insert_1 = (x : val_type) -> this.try_push(x);
_try_erase_1=(val : ref(val_type))-> this.try_pop(val);
_syn_erase_n = (val : array(val_type,1),n:int, lock : mutex, f1 : ()->(), f2 : ()->())

-> {syn._mutex_lock(lock) { f1; }
foreach i in 0 .. n ..1 do if (!this._try_erase_1(val[i])) break; enddo
syn._mutex_lock(lock) { f2; }
return i; }

_syn_insert_n = ...... };

Fig. 3: Example: abstraction adapter interface

3 The Abstraction Replacement Compiler

Our abstraction compiler takes three inputs: the user application to modify, the
adapter interface that relates different abstractions, and a set of optimization
configurations. The developer is expected to invoke our compiler with the same
configurations on all files to ensure consistency of the substitution results. Each
configuration instructs the compiler to convert an abstraction xi to xj , based on
their adapters ai and aj . To do this, the compiler first finds the abstraction type
and the adapter definitions to make sure they are consistent with each other. It
then tries to convert each variable vi of type xi in each function f of the input
application, by first outlining all uses of vi into invocations of abstract interface
functions in ai. Then, it modifies the type definition of xi: if only a subset of its
member variables are used in ai, a new member variable of type xj is added to
xi to replace these member variables; otherwise, the type of vi is simply changed
from xi to xj . Finally, it inlines each abstract interface operation over vi with
implementations defined in adapter aj over the new vj variable.

The key of the compiler is its outlining algorithm, which includes three steps:
(1) normalize the input code to use higher-level notations defined in the adapter
interface; (2) sort all interface functions in increasing granularity and convert
each interface function fa into a set of patterns, where variables, e.g., val, n,
lock, f1, f2, and this in syn erase n of the task queue in Figure 3, are con-
verted to pattern parameters that can be matched to different expressions and
statements; and (3) use each implementation pattern generated in step (2) to
match against existing input code, while outlining each matched code fragment
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struct queue {
int head, tail, size; void** data; int count, threads;
pthread mutex t mutex; pthread cond t empty, full;

};
int dequeue(struct queue *que, int *fetch count, void **to buf) {
1. pthread mutex lock(&que→mutex);
2. while((que→tail==que→head)&&(que→count<que→threads))
3. {pthread wait(&que→empty,&que→mutex);}
4. if((que→tail==que→head)&&(que→count==que→threads)) {
5. pthread cond broadcast(&que→empty); pthread mutex unlock(&que→mutex); return -1;}
6. for((*fetch count)=0; (*fetch count)<16; (*fetch count)++) {
7. to buf[(*fetch count)]=que→data[que→tail]; que→tail++;
8. if (que→tail==que→size) que→tail = 0;
9. if (que→tail==que→head){(*fetch count)++; break;}}
10. pthread cond signal(&que→full); pthread mutex unlock(&que→mutex); return 0;}

Fig. 4: An example queue abstraction

into an invocation of the corresponding interface function. Figure 5(a-b) illus-
trate the results of these steps when outlining the dequeue function in Figure 4,
with the result of instantiating the outlined code by using the TBB concurrent
queue adapter shown in (c). Here the original mutex protected critical section
has been split into three subsections, with the middle section no longer protected
by the lock and instead invoking the already synchronous try erase function of
the TBB queue. Such algorithmic changes are enabled by the adapter definitions,
which can be made quite powerful by integrating knowledge from developers.

Our compiler follows two steps to outline each implementation pattern from
an input code. First, it traverses all statements in the input code while matching
each of them against all parts of the given pattern, with each successful match
remembering the required values for each pattern parameter. Then, it examines
the saved matches to see whether they can be outlined without violating depen-
dences of the original function, while performing the outlining transformation
only when safe. Specifically, each outlining transformation requires a sequence
of statements in the input code that are matched precisely to the sequence of
statements in the given pattern, without any conflicting assignments of values
to the pattern parameters, and with no dependence cycle involving any other
intervening statements in the input code. Note that single pattern parameters
such as variables f1 and f2 in syn erase n of adapter (1) in Figure 3 can be
matched to a sequence of statements in the input code, to enhance effectiveness.

4 Experimental Evaluation

We have implemented our infrastructure using the POET language [16] on top of
the ROSE C/C++ open-source compiler [12]. We used our adapter interface to
manually document a set of queue and map implementations from the PARSEC
benchmarks [4] and from C++11 std [2], TBB [13] and Boost [1] libraries. We
also identified a number of simple mutex-based synchronization patterns and
automatically correlated them with equivalent non-blocking synchronizations,
illustrated in Figure 6. We then tried to optimize PARSEC [4] 3.0, by replacing
their existing uses of queue, map, and synchronization abstractions. We used offline
profiling to determine the performance of different abstractions in different use cases.

We evaluated all benchmarks on two platforms, shown in Table 1. All benchmarks
were compiled using icc with -O3 on the Intel machine and using g++ with -O3 on the
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int dequeue(struct queue *que, int *fetch count, void **to buf) {
1. syn. mutex lock(&que→mutex): {
2. while((que. empty()&&(que→count<que→threads)) {syn. wait(&que→empty,&que→mutex);}
3. if((que. empty()&&(que→count==que→threads)) { syn. broadcast(&que→empty); return -1;}
4. foreach i in 0 .. 16 .. 1 do
5. to buf[i]=que→data[que→tail]; que→tail=que→tail+1; if (que→tail==que→size) que→tail = 0;
6. if (que. empty()){i=i+1; break;} enddo
7. (*fetch count)=i; syn. signal(&que→full);}; return 0;}

(a) after normalization and outlining empty

int dequeue(struct queue *que, int *fetch count, void **to buf) {
1. (*fetch count) = syn erase n(to buf, 16, &que→mutex,
2. /*f1*/{ while((que. empty()&&(que→count<que→threads)) {syn. wait(&que→empty,&que→mutex);}
3. if((que. empty()&&(que→count==que→threads)) { syn. broadcast(&que→empty); return -1;}},
4. /*f2*/ { syn. signal(&que→full);}); return 0;}

(b) after outlining erase 1 and syn erase n

struct queue {
tbb::concurrent queue<void*> *tbb que; int count, threads;
pthread mutex t mutex; pthread cond t empty, full; };

int dequeue(struct queue *que, int size, void **to buf) {
(1) pthread mutex lock(&que→mutex);
(2) while ((que→tbb que→empty())&&(que→count<que→threads))
(3) {pthread cond wait(&que→empty,&que→mutex);}
(4) if ((que→tbb que→empty())&&(que→count==que→threads)) {
(5) pthread cond broadcast(&que→empty); pthread mutex unlock(&que→mutex); return -1;}},
(6) pthread mutex unlock((&que→mutex);
(7) for(int i=0; i<size; i+=1) { if (!que→tbb que→try pop(to buf[i])) break; }
(8) pthread mutex lock(&que→mutex); pthread cond signal(&que→full);
(9) pthread mutex unlock(&que→mutex); (*fetch count) = i; return 0;}

(c) after replacement

Fig. 5: Example: substitute the queue in Figure 4 with TBB concurrent queue

adapt { x : val type; pt : syn.mutex; } as atomic var {
(1) syn fetch add = (incr: val type) →

{ syn. mutex lock(this.pt) { tmp : val type =this.x; this.x=this.x + incr; } return tmp;}
(2) syn add fetch = (inc:val type) → { syn. mutex lock(this.pt) { thix.x=this.x + inc; } return this.x;}
(3) syn set value = (v : val type) → { syn. multex lock(this.pt) { this.x=v; } }
(4) syn set and broadcast = (pc : syn.cond var) →

{ syn. multex lock(this.pt) { this.x=v; syn. broadcast(pc) } }
(5) syn wait cond = (cond : bool, pc : syn.cond var) →

{ syn. multex lock(this.pt) { while (cond) syn. wait(pc, this,pt); } } }
(6) adapt ::pthread barrier t as thread barrier {

barrier init = (n threads : int) → {pthread barrier init(this, NULL, n threads);}
barrier wait = () → {pthread barrier wait(this);}
barrier destroy = () → {pthread barrier destroy(this);} }

Fig. 6: Example adapters for synchronization operations

AMD. Each benchmark is evaluated by using its native input (the largest input set) and
with a thread configuration that provides the best performance. Each measurement
is repeated 10 times, and the average used to calculate performance speedups. The
variations across different runs of the same code are ≤ 5%.

Our framework is able to support the exchange of all uses of pre-defined queue,
map, and synchronization abstractions in PARSEC (they are used in 10 of the 13
available benchmarks). Figure 7 shows the overall performance speedups attained by
our compiler, together with a breakdown of the speedups from tuning only the queue,
map, and synchronization abstraction implementations respectively.

Four PARSEC benchmarks (Dedup, Bodytrack, Ferret and Facesim) use the queue
abstraction. However, they are all designed to minimize contention among the threads
over the queue operations. Due to low contention, a better synchronized queue imple-
mentation does not produce any speedup, unless the overall application is modified
to increase concurrency among the threads. The map abstraction is also used in four
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CPU Freq. L1 Cache sz L2 Cache sz # of cores
Intel E5-2420 1.9GHz 32KB 256KB 12

AMD Opteron-6128 2GHz 64KB 512KB 24

Table 1: Platform Configurations
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Fig. 7: Performance speedups attained by our compiler
PARSEC benchmarks: Canneal, Dedup, Raytrace and Vips. Speedups of 1.255-1.806x
are achieved for Canneal and Raytrace, by replacing their uses of the C++ std::map,
which is internally a red-black tree. with the faster C++ std::unordered map, which is
internally a hash table. No speedups were attained for Dedup and Vips because their
maps are already quite efficient. Most speedups (1.08-2.35x) are attained by replacing
the underlying implementations of synchronizations in Canneal, Bodytrack, Fluidan-
imate, and Streamcluster. All four benchmarks benefited from replacing their uses of
Pthread barriers with a lighter weight implementation using atomic operations followed
by spin waiting. Bodytrack and X264 also benefited from using atomic operations to
replace their mutex-based synchronizations over single global shared variables. The
results across platforms are mostly consistent. We have observed from tuning these
applications that their uses of abstractions are tightly connected with other aspects of
application design, and replacing a single abstraction in isolation is often not rewarding,
unless the abstraction itself is complex enough to offer significant opportunities.

5 Related Work

The idea of automated data structure selection originated in the context abstract data
types [9]. More recent work has studied the automatic selection of abstraction im-
plementations for performance optimizations [14, 10, 5] and the use of nonblocking
synchronizations in multi-threaded applications to enable better load balancing and
scalability [3, 7, 11, 8, 15]. In this paper, we develop compiler support to automate
the deployment of alternative abstraction implementations. Existing frameworks on
abstraction-aware optimizations mostly focus on optimizing a specific type of data
abstraction, e.g., matrices [6] and arrays [17]. Our framework aims to support the
automated selection of general-purpose abstractions in multi-threaded applications.

6 Conclusion

This paper presents a framework for automatically exchanging abstraction implemen-
tations in multi-threaded applications to enhance performance portability. The frame-
work is used to optimize the use of queues, maps, and synchronization abstractions in
the PARSEC benchmarks.
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